
Chapter 1

Markov chain Monte Carlo algorithms for Gaussian processes

Michalis K. Titsias and Magnus Rattray and Neil D. Lawrence1

1.1 Introduction

Gaussian processes (GPs) have a long history in statistical physics and mathemati-
cal probability. Two of the most well-studied stochastic processes, Brownian motion
(Einstein, 1905; Wiener, 1923) and the Ornstein-Uhlenbeck process (Uhlenbeck and
Ornstein, 1930), are instances of GPs. In the context of regression and statistical
learning, GPs have been used extensively in applications that arise in geostatis-
tics and experimental design (O’Hagan, 1978; Wahba, 1990; Cressie, 1993; Stein,
1999). More recently, in the machine learning literature, GPs have been considered
as general estimation tools for solving problems such as nonlinear regression and
classification (Rasmussen and Williams, 2006). In the context of machine learning,
GPs offer a flexible non-parametric Bayesian framework for estimating latent func-
tions from data and they share similarities with neural networks (Neal, 1996) and
kernel methods (Schölkopf and Smola, 2002).

In standard GP regression, where the likelihood is Gaussian, the posterior over
the latent function (given data and hyperparameters) is described by a new GP
that is obtained analytically. In all other cases, where the likelihood function is
non-Gaussian, exact inference is intractable and approximate inference methods
are needed. Deterministic approximate methods are currently widely used for in-
ference in GP models (Williams and Barber, 1998; Gibbs and MacKay, 2000; Csato
and Opper, 2002; Rasmussen and Williams, 2006; Kuss and Rasmussen, 2005; Rue
et al., 2009). However, they are somehow limited since they rely on the assumption
that the likelihood function factorizes. In addition, these methods usually treat the
hyperparameters of the model (the parameters that appear in the likelihood and
the kernel function) in a non full Bayesian way by providing only point estimates.
When more complex GP models are considered that may have non-factorizing and
heavily parametrized likelihood functions, the development of useful deterministic
methods is much more difficult. Complex GP models can arise in time-series ap-
plications, where the association of the latent function with the observed data can
be described, for instance, by a system of ordinary differential equations. An ap-
plication of this type has been recently considered in systems biology (Alon, 2006)
where the latent function is a transcription factor protein that influences through
time the mRNA expression level of a set of target genes (Barenco et al., 2006;
Rogers et al., 2006; Lawrence et al., 2007). In this chapter, we discuss Markov
chain Monte Carlo (MCMC) algorithms for inference in GP models. An advantage
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of MCMC over deterministic approximate inference is that it provides an arbitrarily
precise approximation to the posterior distribution in the limit of long runs. An-
other advantage is that the sampling scheme will often not depend on details of the
likelihood function, and is therefore very generally applicable.

In order to benefit from the advantages of MCMC it is necessary to develop
efficient sampling strategies. This has proved to be particularly difficult in many
GP applications that involve the estimation of a smooth latent function. Given
that the latent function is represented by a discrete set of values, the posterior
distribution over these function values can be highly correlated. The larger discrete
representations of the function are used, the worse the problem of high correlation
becomes. Therefore, simple MCMC schemes such as Gibbs sampling can often
be very inefficient. In this chapter, we introduce two MCMC algorithms for GP
models that can be more effective in sampling from highly correlated posterior
GPs. The first algorithm is a block-based Metropolis-Hastings technique, where
the latent function variables are partitioned into disjoint groups corresponding to
different function regions. The algorithm iteratively samples each function region
by conditioning on the remaining part of the function. The construction of the
proposal distribution requires the partitioning of the function points into groups.
This is achieved by an adaptive process performed in the early stage of MCMC.
The block-based Metropolis-Hastings scheme can improve upon the Gibbs sampler,
but it is still not so satisfactory in dealing with highly correlated posterior GPs.
Therefore, we introduce a more advanced scheme that uses control variables. These
variables are auxiliary function points which are chosen to provide an approximate
low dimensional summary of the latent function. We consider Metropolis-Hastings
updates that firstly propose moves in the low dimensional representation space and
then globally sample the function. The design parameters of the control variables,
i.e. their input locations, are found by minimizing an objective function which is the
expected least squares error of reconstructing the function values from the control
variables, where the expectation is under the GP prior. The number of control
variables required to construct the proposal distribution is found automatically by
an adaptive process performed during the early iterations of the Markov chain. This
sampling algorithm has been previously presented in (Titsias et al., 2009).

Furthermore, we review other sampling algorithms that have been applied to
GPs models such as schemes based on variable transformation and Hybrid Monte
Carlo (Duane et al., 1987). In the context of sampling, we also discuss the problem
of inference over large datasets faced by all GP models due to an unfavourable time
complexity O(n3) where n is the number of function values needed in the GP model.

In our experimental study, we firstly demonstrate the MCMC algorithms on re-
gression and classification problems. As our main application, we consider a problem
in systems biology where we wish to estimate the concentration function of a tran-
scription factor protein that regulates a set of genes. The relationship between the
protein and the target genes is governed by a system of ordinary differential equa-
tions in which the concentration of the protein is an unobserved time-continuous
function. Given a time-series of observed gene expression mRNA measurements and
assuming a GP prior over the protein concentration, we apply Bayesian inference
using MCMC. This allows us to infer the protein concentration function together
with other unknown kinetic parameters that appear in the differential equations.

The remainder of this chapter is as follows. Section 1.2 gives an introduction
to GP models used in statistical learning, while section 1.3 gives a brief overview
of deterministic approximate inference algorithms applied to GP models. Section
1.4 describes sampling algorithms and section 1.5 discusses related work. Section
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1.6 demonstrates the sampling methods on regression and classification problems,
while section 1.7 gives a detailed description of the application to the regulation of
gene transcription. Section 1.8 deals with sampling methods for large GP models.
The chapter concludes with a discussion in section 1.9.

1.2 Gaussian process models

A Gaussian process is a stochastic process, that is a set of random variables {f(x)|x ∈
X}, where X is an index set, for which any finite subset follows a Gaussian distri-
bution. To describe a GP, we only need to specify the mean function m(x) and a
covariance or kernel function k(x,x′):

m(x) = E(f(x)), (1.1)

k(x,x′) = E((f(x)−m(x))(f(x′)−m(x′))), (1.2)

where x,x′ ∈ X . GPs naturally arise in the study of time-continuous stochastic
processes (Doob, 1953; Wang and Uhlenbeck, 1945). In the context of statistical
learning, the practical use of GPs stems from the fact that they provide flexible
ways of specifying prior distributions over real-valued functions that can be used in
a Bayesian estimation framework. In this section, we give a brief introduction to
GPs models in the context of statistical learning. For extensive treatments see, for
example, Rasmussen and Williams (2006).

Suppose we wish to estimate a real-valued function f(x). We assume that x ∈
R

D and D is the dimensionality of the input space. We consider a GP model as the
prior over the latent function f(x), where for simplicity the mean function m(x) is
set to be equal to zero. This prior imposes stronger preferences for certain types
of functions compared to others which are less probable. For instance, the prior
may favour smooth or stationary functions, or functions with certain lengthscales.
All this is reflected in the choice of the kernel k(x,x′), which essentially captures
our prior beliefs about the function we wish to estimate. The kernel k(x,x′) must
be positive definite and can be chosen to fall within a parametric family so as the
values of the hyperparameters θ further specify a member in this family. A common
choice is the squared-exponential kernel:

k(x,x′) = σ2
f exp

{
−1

2
(x− x′)T Σ−1(x− x′)

}
, (1.3)

where σ2
f is the kernel variance parameter and Σ is a positive definite matrix.

Special cases of this kernel are often used in practise. For instance, Σ can be chosen
to be diagonal, Σ = diag[`21, . . . , `

2
D], where each diagonal element is the lengthscale

parameter for a given input dimension. This can be useful in high-dimensional input
spaces, where by estimating the lengthscales we can learn to ignore irrelevant input
dimensions that are uncorrelated with the output signal (Rasmussen and Williams,
2006; Neal, 1996). The above type of kernel function defines a GP model that
generates very smooth (infinitely many times differentiable) functions. This can be
particularly useful for general purpose learning problems such as those that arise
in machine learning applications. Other type of kernel function such as the Matérn
class are often used (Abrahamsen, 1997; Stein, 1999; Rasmussen and Williams,
2006). There are also operations such addition, multiplication and convolution that
allow us to create new valid kernels from old ones.

Having chosen a GP prior over the latent function we would like to combine this
with observed data, through a Bayesian formalism, and obtain a posterior over this
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function. When the data consist of noisy realizations of the latent function and the
noise is Gaussian, the above framework has an analytical solution. In particular,
let (X,y) = {(xi, yi)}n

i=1 be a set of data where xi ∈ RD and yi ∈ R. Each yi is
produced by adding Gaussian noise to the latent function at input xi:

yi = fi + εi, εi ∼ N(0, σ2),

where fi = f(xi). This defines a Gaussian likelihood model p(y|f) = N(y|f , σ2I),
where f = (f1, . . . , fn). The marginalization property of GPs allows simplification
of the prior over the latent function which initially is an infinite dimensional object.
After marginalization of all function points not associated with the data, we obtain
a n-dimensional Gaussian distribution, p(f) = N(f |0,Kf,f ), where 0 denotes the
n-dimensional zero vector and Kf,f is the n × n covariance matrix obtained by
evaluating the kernel function on the observed inputs. Overall, the joint probability
model takes the form

p(y, f) = p(y|f)p(f). (1.4)

Notice that this model is non-parametric as the dimension of the (parameter) f
grows linearly with the number of data points. By applying Bayes’ rule we can
obtain the posterior over f :

p(f |y) =
p(y|f)p(f)∫
p(y|f)p(f)df

, (1.5)

which can be used to obtain the prediction of any quantity of interest. For instance,
the function values f∗ at any set of unseen inputs X∗ are computed according to:

p(f∗|y) =
∫

p(f∗|f)p(f |y)df , (1.6)

where p(f∗|f) is the conditional GP prior given by

p(f∗|f) = N(f∗|Kf∗,fK−1
f,f f ,Kf∗,f∗ −Kf∗,fK−1

f,fK>
f∗,f ). (1.7)

Here, the covariance matrix Kf∗,f∗ is obtained by evaluating the kernel function on
the inputs X∗ and the cross-covariance matrix Kf∗,f is obtained by evaluating for
X∗ and X. The prediction of the values y∗ of the output signal corresponding to
the latent points f∗ is given by p(y∗|y) =

∫
p(y∗|f∗)p(f∗|y)df∗. In the regression

case, where the likelihood is Gaussian, all the above computations are analytically
tractable and give rise to Gaussian distributions. Furthermore, the posterior over
the latent function can be expressed as a new GP with an updated mean and kernel
function. Thus, the counterparts of eq. (1.1) and (1.2) for the posterior GP are
given by

my(x) = k(x, X)(σ2I + Kf,f )−1y, (1.8)

ky(x,x′) = k(x,x′)− k(x, X)(σ2I + Kf,f )−1k(X,x′). (1.9)

where k(x, X) is a n-dimensional row vector of kernel function values between x
and X, while k(X,x) = k(x, X)>. The above functions fully specify our posterior
GP and we can use them directly to compute any quantity of interest. For instance,
the mean and the covariance matrix of the predictive Gaussian p(f∗|y) in eq. (1.6)
is simply obtained by evaluating the above at the inputs X∗.
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The posterior GP depends on the values of the kernel parameters θ as well as
the likelihood parameters. To make our notation explicit, we write the likelihood
as p(y|f ,α), with α being the parameters of the likelihood2, and the GP prior
as p(f |θ). The quantities (α,θ) are the hyperparameters of the GP model which
have to be specified in order to obtain a close fit to the observed data. A common
practise in machine learning is to follow an empirical Bayes approach and choose
these parameters by maximizing the marginal likelihood:

p(y|α,θ) =
∫

p(y|f ,α)p(f |θ)df .

When the likelihood is Gaussian this quantity is just a Gaussian distribution which
can be maximized over (α,θ) by applying a continuous optimization method. A
full Bayesian treatment of the hyperparameters requires the introduction of cor-
responding prior distributions and an estimation procedure based on MCMC; see
section 1.4.5 for further discussion of this issue.

1.3 Non-Gaussian likelihoods and deterministic methods

The above framework, while flexible and conceptually simple, it is computationally
tractable only when the likelihood function p(y|f ,α) is Gaussian. When the like-
lihood is non-Gaussian, computations become intractable and quantities such as
the posterior p(f |α,θ,y) and the marginal likelihood p(y|α,θ) are not available in
closed form. Clearly, the posterior process over the latent function f(x) is not a GP
any more. In such cases we need to consider approximate inference methods. Before
describing MCMC methods in section 1.4, we give a brief overview of deterministic
approximate inference methods and highlight some of their limitations.

Deterministic methods are widely used for approximate inference in GP mod-
els, especially in the machine learning community. Three different algorithms
used are the Laplace approximation (Williams and Barber, 1998), the expectation-
propagation algorithm (Minka, 2001; Csato and Opper, 2002; Lawrence et al., 2002;
Kuss and Rasmussen, 2005; Seeger, 2003) and the variational Gaussian approxima-
tion (Opper and Archambeau, 2009). For instance, in binary GP classification,
the expectation-propagation algorithm seems to be accurate (Kuss and Rasmussen,
2005). Deterministic methods are also recently discussed in the statistics literature
in the context of Gaussian Markov random fields (Rue et al., 2009). All of these
methods rely heavily on GP models that have a factorizing likelihood function, i.e.
p(y|f ,α) =

∏n
i=1 p(yi|fi), where each likelihood factor p(yi|fi) depends on a single

function value fi, and there is no sharing of function points across factors. Based
on these assumptions, the conditional posterior is written in the form

p(f |α,θ,y) ∝ exp

{
N∑

i=1

log p(yi|fi)−
1
2
fT K−1

f,f f

}
. (1.10)

All alternative methods approximate this posterior by a Gaussian distribution.
They differ in the way such a Gaussian is obtained. For instance, the Laplace
method replaces each factor log p(yi|fi) with a quadratic approximation, based
on a Taylor series, and applies continuous optimization to locate the mode of
p(f |α,θ,y). The expectation-propagation algorithm and the variational method

2For the regression case α consists only of σ2.
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also use iterative procedures, while being somehow more advanced as they min-
imize some divergence between a Gaussian approximation and the exact poste-
rior. These methods will often be reasonably accurate especially when the condi-
tional posterior p(f |α,θ,y) is uni-modal. Note, however, that the marginal pos-
terior p(f |y) =

∫
p(f |α,θ,y)p(α,θ|y)dαdθ will generally be multi-modal even for

the standard regression case. The hyperparameters (α,θ) are typically estimated
based on empirical Bayes, where point estimates are obtained by maximizing an
approximation to the marginal likelihood p(y|α,θ). More recently a determinis-
tic method, the nested Laplace approximation (Rue et al., 2009), considers a full
Bayesian methodology where the hyperparameters are integrated out by applying
numerical integration. However, this method can handle only a small number of
hyperparameters (less than six).

In complex GP models, with non-factorizing likelihood functions, it is not clear
how to apply the current deterministic methods3. Such a complex form of likeli-
hood arises in the application described in section 1.7 that concerns inference of
transcription factors in gene regulation. This problem involves a dynamical model
derived by solving a systems of ODEs. Furthermore, in this model the number of
likelihood parameters α can be large (84 in one example given in section 1.7) and it
is of great importance to estimate confidence intervals for those parameters through
a full Bayesian methodology. Note that the method described by Rue et al. (2009)
that considers full Bayesian inference is not applicable in this case, not only because
it assumes a factorizing likelihood but also because it assumes a small number of
hyperparameters.

Instead of using deterministic inference algorithms, we can consider stochastic
methods based on MCMC. Efficient MCMC methods can reliably deal with complex
GP models, having non-factorizing likelihoods, and unlike deterministic methods
they benefit from a arbitrarily precise approximation to the true posterior in the
limit of long runs. In the next section we discuss MCMC algorithms.

1.4 Sampling algorithms for Gaussian Process models

A major concern with the development of MCMC algorithms in GP models is how to
efficiently sample from the posterior conditional p(f |α,θ,y). This posterior involves
a high-dimensional random variable, consisting of function values that can be highly
correlated with one another.

In this section, we describe several sampling schemes that can simulate from
p(f |α,θ,y) given that the hyperparameters obtain some arbitrary, but fixed, values.
In order for our presentation to be instructive, we start with simple schemes such
as Gibbs sampling (section 1.4.1) and move to more advanced schemes using block-
based Metropolis-Hastings (section 1.4.2) and control variables (section 1.4.3). All
these methods can easily be generalized to incorporate steps that can also simulate
from (α,θ) as discussed in section 1.4.5. To simplify our notation in the next three
sections we omit reference to the hyperparameters.

1.4.1 Gibbs sampling and independent Metropolis-Hastings

The MCMC algorithm we consider is the general Metropolis-Hastings (MH) algo-
rithm (Robert and Casella, 2004; Gelman et al., 2004). Suppose we wish to sample

3This is true for the expectation-propagation, variational Gaussian approximation and nested
Laplace method which seem to depend on the assumption of having a factorizing likelihood. The
Laplace approximation is, of course, generally applicable.
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from the posterior in eq. (1.5). The MH algorithm forms a Markov chain. We ini-
tialize f (0) and we consider a proposal distribution Q(f (t+1)|f (t)) that allows us to
draw a new state given the current state. The new state is accepted with probability
min(1, A) where

A =
p(y|f (t+1))p(f (t+1))

p(y|f (t))p(f (t))
Q(f (t)|f (t+1))
Q(f (t+1)|f (t))

. (1.11)

To apply this generic algorithm, we need to choose the proposal distribution Q.
For GP models, finding a good proposal distribution is challenging since f is high
dimensional and the posterior distribution can be highly correlated. Despite that,
there is a lot of structure in a GP model, specifically in the prior p(f), that can
greatly facilitate the selection of a good proposal distribution.

To motivate the algorithms presented in section 1.4.2, and 1.4.3, we firstly dis-
cuss two extreme options for specifying the proposal distribution Q. One simple way
to choose Q is to set it equal to the GP prior p(f) so that the proposed state is in-
dependent of the current one. This gives us an independent MH algorithm (Robert
and Casella, 2004). However, sampling from the GP prior is very inefficient since it
ignores the posterior structure induced by the data leading to a low acceptance rate.
Thus the Markov chain will get stuck in the same state for thousands of iterations.
On the other hand, sampling from the prior is appealing because any generated
sample satisfies the smoothness requirement imposed by the kernel function. Func-
tions drawn from the posterior GP should satisfy the same smoothness requirement
as well. It would be interesting to design proposal distributions that can possess
this property but simultaneously allow us to increase the acceptance rate.

The other extreme choice for the proposal, that has been considered by Neal
(1997), is to apply Gibbs sampling where we iteratively draw samples from each
posterior conditional density p(fi|f\i,y) with f\i = f \ fi. This scheme is feasi-
ble only when each conditional is log-concave and the adaptive rejection sampling
method (Gilks and Wild, 1992) can be used. This will often be the case for models
with a factorizing likelihood, where p(fi|f\i,y) ∝ p(yi|fi)p(fi|f\i). Any sample in
the Gibbs algorithm is accepted with probability one. However, Gibbs sampling
can be extremely slow for densely discretized or sampled functions, as in the re-
gression problem of Figure 1.1, where the posterior distribution over f becomes
highly correlated. To clarify this, note that the variance of the posterior condi-
tional p(fi|f\i,y) will typically be smaller than the variance of the conditional GP
prior p(fi|f\i). However, p(fi|f\i) may already have a tiny variance caused by the
conditioning on all remaining latent function values. The more densely sampled a
function is (relative to the lengthscale of the kernel function), the more inefficient
the Gibbs algorithm becomes since the variance of p(fi|f\i) tends to zero. For the
one-dimensional example in Figure 1.1, Gibbs sampling is practically not useful.
We study this issue further in section 1.6.

To obtain an algorithm similar to Gibbs sampling but without requiring the use
of adaptive rejection sampling, we can consider as the proposal distribution in the
MH algorithm the sequence of the conditional densities p(fi|f\i). Thus, we replace
the posterior conditional p(fi|f\i,y) with the prior conditional p(fi|f\i). We call this
algorithm, which has been used in geostatistics (Diggle et al., 1998), the Gibbs-like
algorithm. This algorithm can exhibit a high acceptance rate, but it is inefficient
to sample from highly correlated functions for reasons discussed above.

A common technique used to improve the slow mixing of the Gibbs-type of
algorithms when sampling from a high dimensional posterior distribution is to clus-
ter the variables into separate groups and sample all variables of a group within
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a single MH step based on an appropriately defined proposal distribution. Given
that different groups of variables are weakly correlated, such a scheme can be more
effective. Next we describe the local region sampling algorithm which is a way of
implementing this idea for GP models.

1.4.2 Sampling using local regions

We now introduce a simple generalization of the Gibbs-like algorithm that is more
appropriate for sampling from smooth functions. The idea here is to divide the
domain of the function into regions and sample the entire function within each
region.

We wish to divide the domain of the function into local regions and sample
these local regions iteratively. Let fk denote the function points that belong to
the local region k, where k = 1, . . . ,M and f1 ∪ . . . ∪ fM = f . New values for the
region k are proposed by drawing from the conditional GP prior p(f t+1

k |f (t)
\k ), where

f\k = f \ fk, by conditioning on the remaining function values. f (t+1)
k is accepted

with probability min(1, A) where

A =
p(y|f (t+1)

k , f (t)
\k )

p(y|f (t)
k , f (t)

\k )
. (1.12)

Sampling fk is iterated between all different regions k = 1, . . . ,M . Note that the
terms associated with the GP prior cancel out from the acceptance probability since
sampling from the conditional prior ensures that any proposed sample is invariant
to the GP prior. Given that the initial state f (0) is a sample from the prior, any
proposed function region leads to a possible sample drawn from the GP prior. Notice
that sampling from the GP prior and the Gibbs-like algorithm are two extreme cases
of the above scheme.

To apply the algorithm, we need to partition the function values f into groups.
This process corresponds to adaption of the proposal distribution and can be carried
out during the early iterations of MCMC. An adaptive scheme can start with a small
number of clusters, so that the acceptance rate is very low, and then refine the initial
clusters in order to increase the acceptance rate. Following the widely used ideas
in the theory of adaptive MCMC (Gelman et al., 1996; Roberts et al., 1996; Haario
et al., 2001) and Atchade et al. (in this volume) according to which desirable
acceptance rates of MH algorithms are around 1/4, we require the algorithm to
sample with acceptance rate close to that value.

More specifically, the adaption process is as follows. We obtain an initial par-
titioning of the vector f by clustering the inputs X using the k-means algorithm.
Then we start the simulation and observe the local acceptance rate rk associated
with the proposal p(fk|f\k). Each rk provides information about the variance of the
proposal distribution relative to the local characteristics of the function in region
k. A small rk implies that p(fk|f\k) has high variance and most of the generated
samples are outside of the support of the posterior GP; see Figure 1.1 for an illus-
trative example. Hence, when rk is small, we split the cluster k into two clusters
by locally applying the k-means algorithm using all the inputs previously assigned
to the initial cluster k. Clusters that have high acceptance rate are unchanged.
This hierarchical partitioning process is recursively repeated until all of the current
clusters exhibit a local acceptance rate larger than the predefined threshold 1/4.
Notice that the above partitioning process can be characterized as supervised in
the sense that the information provided by the MH steps is used to decide which
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Figure 1.1: Illustration of the hierarchical clustering process. The panel in (a) shows the variance
(displayed with shaded two standard errors bars) of the initial conditional GP prior where we
condition on the right side of the function. Since the variance is high the generated local parts
of the function will not fit the data often. Dividing the local input region in (a) into two smaller
groups (plots (b) and (c)) results a decrease of the variance of the newly formed GP conditional
priors and gives an increase in the acceptance rate. However, notice that the variance of the
proposal distribution in the boundaries between different function regions is always small. This
can affect the efficiency of the sampling algorithm.

clusters need to be further split into smaller groups. Figure 1.1 gives an illustration
of the adaptive partitioning process in an one-dimensional regression problem.

Once the adaption of the proposal distribution has ended, we can start sampling
from the posterior GP model. The final form of the proposal distribution is a
partition of the vector f into M disjoint groups and the conditional GP prior is the
proposal distribution for each group.

As shown in section 1.6, the local region algorithm improves upon the Gibbs
sampler. However, this scheme will still be inefficient to sample from highly cor-
related posteriors since the variance of the proposal distribution can become very
small close to the boundaries between neighbouring function regions as illustrated
in Figure 1.1. In such cases, there will be variables belonging to different groups
which are highly correlated with respect to the GP prior distribution. Of course,
these variables will be also highly correlated in terms of the GP posterior. There-
fore, the boundaries between function regions can cause the state vector f (t) to
move with a rather small speed when exploring the probability mass, which will
lead the Markov chain to mix poorly. Next we describe a sampling algorithm using
auxiliary variables, called control points, which attempts to resolve the problems
encountered by the local region sampling method and sample more efficiently from
highly correlated posterior GPs.

1.4.3 Sampling using control variables

The algorithm described previously is a local sampler that samples each part of
the function by conditioning on the remaining part of the function. As discussed
previously this can result in a slow exploration of the probability density. To resolve
the problem of local sampling we would like to sample the function in a more global
sense. Next we discuss an algorithm that achieves this by making use of auxiliary
variables.

Let fc be a set of M auxiliary function values that are evaluated at inputs Xc

and drawn from the GP prior. We call fc the control variables and their meaning
is analogous to the auxiliary inducing variables used in sparse GP models (Snelson
and Ghahramani, 2006; Quiñonero Candela and Rasmussen, 2005). To compute
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the posterior p(f |y) based on control variables we use the expression

p(f |y) =
∫
fc

p(f |fc,y)p(fc|y)dfc. (1.13)

Assuming that fc is an approximate sufficient statistic for the parameter f , so that
p(f |fc,y) ' p(f |fc), we can approximately sample from p(f |y) in a two-stage man-
ner: firstly sample the control variables from p(fc|y) and then generate f from the
conditional prior p(f |fc). This scheme can allow us to introduce a MH algorithm,
where we need to specify only a proposal distribution q(f (t+1)

c |f (t)
c ), that will mimic

sampling from p(fc|y), and always sample f from the conditional prior p(f |fc). The
whole proposal distribution takes the form

Q(f (t+1), f (t+1)
c |f (t)

c ) = p(f (t+1)|f (t+1)
c )q(f (t+1)

c |f (t)
c ), (1.14)

which is used in the MH algorithm in order to sample from the augmented pos-
terior p(f , fc|y). We should emphasize that this proposal distribution does not
define an independent Metropolis-Hastings algorithm. However, it satisfies a cer-
tain conditional independence relatioship according to which each proposed state
(f (t+1), f (t+1)

c ) depends only on the previous state of the control points f (t)
c and not

on f (t). Figure 1.2 illustrates the steps of sampling from this proposal distribution.
Each proposed sample is accepted with probability min(1, A) where A is given by

A =
p(y|f (t+1))p(f (t+1)

c )

p(y|f (t))p(f (t)
c )

.
q(f (t)

c |f (t+1)
c )

q(f (t+1)
c |f (t)

c )
. (1.15)

where the terms involving the conditional GP prior p(f |fc) cancel out. The useful-
ness of the above sampling scheme stems from the fact that the control variables can
form a low-dimensional representation of the function that does not depend much
on the size of f , i.e. on how much densely the function has been discretized. The
control points will tend to be less correlated with one another since the distance be-
tween pairs of them can be large as illustrated in Figure 1.2. The use of the proposal
distribution in eq. (1.14) implies that the speed of the Markov chain, i.e. the ability
to perform big moves when sampling f , will crucially depend on how the control
variables are sampled from q(f (t+1)

c |f (t)
c ). The other part of the proposal distribu-

tion draws an f (t+1) that interpolates smoothly between the control points. Thus,
while Gibbs-sampling will move more slowly as we keep increasing the size of f , the
sampling scheme using control variables will remain equally efficient in performing
big moves. In section 1.4.4 we describe how to select the number M of control
variables and the inputs Xc using an adaptive MCMC process. In the remainder of
this section we discuss how we set the proposal distribution q(f (t+1)

c |f (t)
c ).

A suitable choice for q is to use a Gaussian distribution with diagonal or full
covariance matrix. The covariance matrix can be adapted during the burn-in phase
of MCMC, for instance using the algorithm by Haario et al. (2001), in order to tune
the acceptance rate. Although this scheme is general, it has practical limitations.
Firstly, tuning a full covariance matrix is time consuming and in our case this adap-
tion process must be carried out simultaneously with searching for an appropriate
set of control variables. Also, since the terms involving p(fc) do not cancel out
in the acceptance probability in eq. (1.15), using a diagonal covariance for the q
distribution has the risk of proposing control variables that may not satisfy the GP
prior smoothness requirement. To avoid these problems, we define q by using the
GP prior. According to eq. (1.13) a suitable choice for q must mimic the sampling
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Figure 1.2: Illustration of sampling using control variables. (left) shows the current GP function
f (t) with green, the data and the current location of the control points (red circles). (middle)
shows the proposed new positions for the control points (diamonds in magenta). (right) shows the
proposed new function values f (t+1) drawn from the conditional GP prior (blue dotted line).
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Figure 1.3: Visualization of iterating between control variables. The red solid line is the current

f (t), the blue line is the proposed f (t+1), the red circles are the current control variables f
(t)
c

while the diamond (in magenta) is the proposed control variable f
(t+1)
ci

. The blue solid vertical

line represents the distribution p(f
(t+1)
ci

|f (t)
c\i

) (with two-standard error bars) and the shaded area

shows the effective proposal p(f t+1|f (t)
c\i

).

from the posterior p(fc|y). Given that the control points are far apart from each
other, Gibbs sampling in the control variables space can be efficient. However, iter-
atively sampling fci

from the conditional posterior p(fci
|fc\i

,y) ∝ p(y|fc)p(fci
|fc\i

),
where fc\i

= fc \ fci is intractable for non-Gaussian likelihoods4. An attractive
alternative is to use a Gibbs-like algorithm where each fci is drawn from the condi-
tional GP prior p(f (t+1)

ci |f (t)
c\i

) and is accepted using the MH step. More specifically,
the proposal distribution draws a new f

(t+1)
ci for a certain control variable i from

p(f (t+1)
ci |f (t)

c\i
) and generates the function f (t+1) from p(f (t+1)|f (t+1)

ci , f (t)
c\i

). The sam-
ple (f (t+1)

ci , f (t+1)) is accepted using the MH step. This scheme of sampling the
control variables one-at-a-time and resampling f is iterated between different con-
trol variables. A complete iteration of the algorithm consists of a full scan over all
control variables. The acceptance probability A in eq. (1.15) becomes the likelihood
ratio and the prior smoothness requirement is always satisfied. The detailed itera-
tion of this sampling method is given in Algorithm 1 and is illustrated in Figure
1.3.

Although the control variables are sampled one-at-at-time, f can still be drawn
with a considerable variance which does not shrink to zero in certain regions of the

4This is because we need to integrate out f in order to compute p(y|fc).
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Algorithm 1 Control-points MCMC

Input: Initial state of control points f (0)
c and f (0)

repeat
for i = 1 to M do

Sample the ith control point: f (t+1)
ci ∼ p(f (t+1)

ci |f (t)
c\i

)
Sample f (t+1): f (t+1) ∼ p(f t+1|f (t+1)

ci , f (t)
c\i

)
Accept or reject (f (t+1), f

(t+1)
ci ) with the MH probability (likelihood ratio)

end for
until Convergence of the Markov chain is achieved

input space as happened for the local region sampling algorithm. To clarify this,
note that when the control variable fci

changes, the effective proposal distribution
for f is

p(f t+1|f (t)
c\i

) =
∫

f
(t+1)
ci

p(f t+1|f (t+1)
ci

, f (t)
c\i

)p(f (t+1)
ci

|f (t)
c\i

)df (t+1)
ci

, (1.16)

which is the conditional GP prior given all the control points apart from the current
point fci

. This conditional prior can have considerable variance close to fci
and in

all regions that are not close to the remaining control variables. As illustrated
in Figure 1.3, the iteration over different control variables allow f to be drawn
with a considerable variance everywhere in the input space whilst respecting the
smoothness imposed by the GP prior.

1.4.4 Selection of the control variables

To apply the previous algorithm we need to select the number, M , of the control
points and the associated inputs Xc. Xc must be chosen so that knowledge of fc can
determine f with small error. The prediction of f given fc is equal to Kf,fcK

−1
fc,fc

fc
which is the mean of the conditional prior p(f |fc). A suitable way to search over
Xc is to minimize the reconstruction error ||f −Kf,fcK

−1
fc,fc

fc||2 averaged over any
possible value of (f , fc):

G(Xc) =
∫
f ,fc

||f−Kf,fcK
−1
fc,fc

fc||2p(f |fc)p(fc)dfdfc = Tr(Kf,f−Kf,fcK
−1
fc,fc

K>
f,fc

).

The quantity inside the trace is the covariance of p(f |fc) and thus G(Xc) is the
total variance of this distribution. We can minimize G(Xc) w.r.t. Xc using contin-
uous optimization similarly to the approach in (Snelson and Ghahramani, 2006).
Note that G(Xc) is nonnegative and when it becomes zero, p(f |fc) becomes a delta
function, which means that the control variables fully determine f .

To find the number M of control points we minimize G(Xc) by incrementally
adding control variables until the total variance of p(f |fc) becomes smaller than a
certain percentage of the total variance of the prior p(f). 5% was the threshold used
in all our experiments. Then we start the simulation and we observe the acceptance
rate of the Markov chain. According to standard approaches (Robert and Casella,
2004; Gelman et al., 2004), which suggest that desirable acceptance rates of MH
algorithms are around 1/4, we require a single step of the algorithm to have an
acceptance rate around 1/4. When, for the current set of control inputs Xc, the
chain has a low acceptance rate, it means that the variance of p(f |fc) is still too
high and we need to add more control points in order to further reduce G(Xc). The
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process of observing the acceptance rate and adding control variables is continued
until we reach the desired acceptance rate.

When the training inputs X are placed uniformly in the space, and the kernel
function is stationary, the minimization of G places Xc in a regular grid. In general,
the minimization of G places the control inputs close to the clusters of the input
data in such a way that the kernel function is taken into account. This suggests that
G can also be used for learning inducing variables in sparse GP models (Snelson
and Ghahramani, 2006; Seeger et al., 2003) in a unsupervised fashion, where the
observed outputs y are not involved.

1.4.5 Sampling the hyperparameters

Above we discussed algorithms for sampling from the conditional posterior p(f |α,θ,y)
given a fixed setting of the hyperparameters (α,θ). These parameters, however, are
typically unknown and we need to estimate them by following a full Bayesian ap-
proach. In particular, we need to assign priors to those parameters, denoted by
p(α) and p(θ), and sample their values during MCMC by adding suitable updates
into all previous MH algorithms. In these updates, we simulate from the conditional
posterior distribution p(α,θ|f ,y) which factorizes across α and θ, thus yielding two
separate conditionals:

p(α|f ,y) ∝ p(y|f ,α)p(α), p(θ|f) ∝ p(f |θ)p(θ). (1.17)

Sampling now from any of these distributions is carried out by using some proposal
distribution, for instance a Gaussian, in the MH algorithm. The kernel hyperpa-
rameters often take positive values and they can be sampled in the log space. In the
experiments in sections 1.6 and 1.7, we use Gaussian proposal distributions which
are adapted during the early iterations of MCMC in order to tune the acceptance
rate. Furthermore, in the problem of transcriptional gene regulation (see section
1.7), the likelihood parameters α exhibit additional conditional independencies and
thus we can sample them independently in separate blocks. Neal (1997) uses Hy-
brid Monte Carlo (Duane et al., 1987) to sample the hyperparameters in GP models
following his earlier work on Bayesian neural networks (Neal, 1996).

An accepted state for the kernel hyperparameters requires an update of the
proposal distribution when sampling f . This holds for all algorithms, described
previously, that simulate from the conditional posterior p(f |α,θ). For instance,
in the algorithm using control variables and for a newly accepted state of the hy-
perparameters, denoted by θ(t), the conditional Gaussian p(f |fc,θ(t)) needs to be
computed. This requires the estimation of the mean vector of this Gaussian as well
as the Cholesky decomposition of the covariance matrix. Finally, we should point
out that sampling the kernel hyperparameters can easily become one of the most
expensive updates during MCMC, especially when the dimensions of the vector f
is large.

1.5 Related work and other sampling schemes

The MCMC algorithms described in section 1.4.3 and 1.4.2 use an adaptive process
which tunes the proposal distribution in order to fit better the characteristics of
the posterior distribution. We can classify these algorithms as instances of adaptive
MCMC methods (see Atchade et al. in this volume). However, our schemes are
specialized to GP models. The most advanced algorithm we presented, that uses
control variables, adapts the proposal distribution by finding a set of control vari-
ables which somehow provide an approximate low dimensional representation of the
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posterior distribution. This way of adaption is rather different to other adaptive
MCMC techniques. Perhaps the nearest technique in the literature is the principal
directions method described by Andrieu and Thoms (2008).

Regarding other sampling algorithms for GP models, several other schemes seem
possible and some have been considered in applications. A sampling method often
considered is based on the transformation of the vector f of function values (Kuss
and Rasmussen, 2005). In particular, since much of the correlation that exists in the
posterior conditional distribution p(f |α,θ,y) is coming from the GP prior, a way
to reduce this correlation is to transform f so that the GP prior is whitened. If L is
the Cholesky decomposition of the covariance matrix Kf,f of the GP prior p(f |θ),
then the transformation z = L−1f defines a new random vector that is white with
respect to the prior. Sampling in the transformed GP model can be easier as the
posterior over z can be less correlated than the posterior over f . However, since z
is a high dimensional random variable, the use of a Gaussian proposal distribution
in a random walk MH algorithm can be inefficient. This is mainly because of
practical difficulties encountered when tuning a full covariance matrix in very high
dimensional spaces. Therefore, a more practical approach often considered (Kuss
and Rasmussen, 2005), is to sample z based on the Hybrid Monte Carlo algorithm
(Duane et al., 1987). This method uses gradient information and has shown to be
effective in sampling in high dimensional spaces (Neal, 1996).

Another common approach to sample the function latent values is to construct
a Gaussian approximation to the posterior conditional p(f |α,θ,y) and use this as a
proposal distribution in the MH algorithm (Rue and Held, 2005; Christensen et al.,
2006; Vanhatalo and Vehtari, 2007). Vanhatalo and Vehtari (2007) further combine
this approximation with a transformation of the random variables and a subsequent
use of Hybrid Monte Carlo. A Gaussian approximation can be constructed, for
instance, by using one of the techniques discussed in section 1.3. This method
can be appropriate for specialized problems in which the likelihood function takes
a simple factorizing form and the number of the hyperparameters is rather small.
Notice that the Gaussian approximation is obtained by fixing the hyperparameters
(α,θ) to certain values. However, once new values are sampled for those parameters,
the Gaussian approximation can become inaccurate. This is rather more likely to
occur when the number of hyperparameters is large and varying their values can
significantly affect the shape of the conditional posterior p(f |α,θ,y). To overcome
this, we could update the Gaussian approximation in order to accommodate the
changes made in the values of the hyperparameters. However, this scheme can be
computationally very expensive and additionally we need to make sure that such
updates do not affect the convergence of the Markov chain to the correct posterior
distribution.

Finally, another simple approach for sampling in a GP model is to use the
underrelaxation proposal distribution (Adams et al., 2009; Neal, 1998) according to
which the proposed new state f (t+1) is produced by

f (t+1) = πf (t) +
√

1− π2u,

where u is a sample drawn from the GP prior p(f) and π ∈ [0, 1]. This procedure
leaves the GP prior invariant, so that the MH acceptance probability depends only
on the likelihood ratio. The parameter π can be adapted in order to tune the
acceptance rate. In a typical problem this adaption process will set π rather very
close to 1 so that f (t+1) will tend to be slightly different than f (t). A value of π that
is very close to 1 can result in a slow mixing behavior especially when the posterior
distribution has multiple modes. Nevertheless, we believe that this underrelaxation
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Figure 1.4: (a) shows the evolution of the KL divergence (against the number of MCMC iterations)
between the true posterior and the empirically estimated posteriors for a 5-dimensional regression
dataset. (b) shows the mean values with one-standard error bars of the KL divergence (against the
input dimension) between the true posterior and the empirically estimated posteriors. (c) plots
the number of control variables used together with the average correlation coefficient of the GP
prior.

scheme can become more promising if combined with the algorithm using control
variables where it can provide alternative ways of sampling the control variables.
Such a combination is under investigation and it will be presented in a future work.

1.6 Demonstration on regression and classification

In this section, we demonstrate the sampling algorithms on regression and clas-
sification problems. In the first experiment we compare Gibbs sampling (Gibbs),
sampling using local regions (region) and sampling using control variables (control)
in standard regression problems of varied input dimensions. The performance of the
algorithms can be accurately assessed by computing the KL divergences between
the exact Gaussian posterior p(f |y) and the Gaussians obtained by MCMC. We fix
the number of training points to N = 200 and we vary the input dimension d from
1 to 10. The training inputs X were chosen randomly inside the unit hypercube
[0, 1]d. This can allow us to study the behavior of the algorithms with respect to
the amount of correlation in the posterior GP which is proportional to how densely
the function is sampled. The larger the dimension, the sparser the function is sam-
pled. The outputs y were chosen by randomly producing a GP function using the
squared-exponential kernel σ2

f exp(− ||xm−xn||2
2`2 ), where (σ2

f , `2) = (1, 100) and then
adding noise with variance σ2 = 0.09. The burn-in period was 104 iterations5. For
a certain dimension d the algorithms were initialized to the same state obtained by
randomly drawing from the GP prior. The parameters (σ2

f , `2, σ2) were fixed to the
values that generated the data. The experimental setup was repeated 10 times so
as to obtain confidence intervals. We used thinned samples (by keeping one sample
every 10 iterations) to calculate the means and covariances of the 200-dimensional
posterior Gaussians. Figure 1.4(a) shows the KL divergence against the number
of MCMC iterations for the 5-dimensional input dataset. It seems that for 200
training points and 5 dimensions, the function values are still highly correlated and
thus Gibbs takes much longer for the KL divergence to drop to zero. Figure 1.4(b)
shows the KL divergence against the input dimension after fixing the number of it-

5For Gibbs we used 2×104 iterations since the region and control algorithms require additional
iterations during the adaption phase.
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Figure 1.5: We show results for GP classification. Log-likelihood values are shown for MCMC
samples obtained from (a) Gibbs and (b) control applied to the WBC dataset. In (c) we show the
test errors (grey bars) and the average negative log likelihoods (black bars) on the WBC (left) and
PID (right) datasets and compare with EP.

erations to be 3×104. Clearly Gibbs is very inefficient in low dimensions because of
the highly correlated posterior. As dimension increases and the functions become
sparsely sampled, Gibbs improves and eventually the KL divergences approaches
zero. The region algorithm works better than Gibbs but in low dimensions it also
suffers from the problem of high correlation. For the control algorithm we observe
that the KL divergence is very close to zero for all dimensions. Note also that as we
increase the number of dimensions Gibbs eventually becomes slightly better than
the control algorithm (for d = 8 and onwards) since the function values tend to be
independent from one another. Figure 1.4(c) shows the increase in the number of
control variables used as the input dimension increases. The same plot shows the
decrease of the average correlation coefficient of the GP prior as the input dimen-
sion increases. This is very intuitive, since one should expect the number of control
variables to increase as the function values become more independent. In the limit
when the function values are independent, there will be no accurate low-dimensional
representation of the function values and the optimal number of control variables
will tend to the number of function values sampled.

Next we consider two GP classification problems for which exact inference is
intractable. GP classification involves a factorizing likelihood function. For the
binary classification problem each factor p(yi|fi) in the likelihood is defined based
on the probit or logit model. Deterministic inference methods for GP classifica-
tion are widely used in machine learning (Williams and Barber, 1998; Csato and
Opper, 2002; Lawrence et al., 2002). Among these approaches, the expectation-
propagation (EP) algorithm of Minka (2001) is found to be the most efficient (Kuss
and Rasmussen, 2005). Our MCMC implementation confirms these findings since
sampling using control variables gave similar classification accuracy to EP. We used
the Wisconsin Breast Cancer (WBC) and the Pima Indians Diabetes (PID) binary
classification datasets. The first consists of 683 examples (9 input dimensions) and
the second of 768 examples (8 dimensions). 20% of the examples were used for
testing in each case. The MCMC samplers were run for 5× 104 iterations (thinned
to one sample every five iterations) after a burn-in of 104 iterations. The hyper-
parameters were fixed to those obtained by EP. Figures 1.5(a) and (b) shows the
log-likelihood for MCMC samples on the WBC dataset, for the Gibbs and control
algorithms respectively. It can be observed that mixing is far superior for the control
algorithm and it has also converged to a much higher likelihood. In Figure 1.5(c)
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we compare the test error and the average negative log likelihood in the test data
obtained by the two MCMC algorithms with the results from EP. The proposed
control algorithm shows similar classification performance to EP, while the Gibbs
algorithm performs significantly worse on both datasets.

1.7 Transcriptional regulation

We consider a small biological sub-system where a set of target genes are regulated
by one transcription factor (TF) protein. Ordinary differential equations (ODEs)
can provide an useful framework for modelling the dynamics in these biological
networks (Alon, 2006; Barenco et al., 2006; Rogers et al., 2006; Lawrence et al.,
2007; Gao et al., 2008). The concentration of the TF and the gene specific kinetic
parameters are typically unknown and need to be estimated by making use of a
time-series of observed gene expression levels. We use a GP prior to model the
unobserved TF activity, as proposed by Lawrence et al. (2007), and apply full
Bayesian inference based on the MCMC. Next we discuss in detail this method.

Barenco et al. (2006) introduce a linear ODE model for gene activation from
TF. This approach was extended by Rogers et al. (2006); Lawrence et al. (2007) to
account for non-linear models. The general form of the ODE model for transcription
regulation with a single TF has the form

dyj(t)
dt

= Bj + Sjg(f(t))−Djyj(t), (1.18)

where the changing level of a gene j’s expression, yj(t), is given by a combination
of basal transcription rate, Bj , sensitivity, Sj , to its governing TF’s activity, f(t),
and the decay rate of the mRNA. The function g is typically a non-linear activation
function that accounts for phenomena such as gene activation, gene repression and
saturation effects. Later in this section, we give specific examples of g functions.
Notice also that the TF protein concentration function f(t) takes positive values.
The differential equation can be solved for yj(t) giving

yj(t) =
Bj

Dj
+

(
Aj −

Bj

Dj

)
e−Djt + Sje

−Djt

∫ t

0

g(f(u))eDjudu, (1.19)

where Aj term arises from the initial condition. Due to the non-linearity of the
g function that transforms the TF, the integral in the above expression is not
analytically obtained. However, numerical integration can be used to accurately
approximate the integral with a dense grid (ui)P

i=1 of points in the time axis and
evaluating the function at the grid points fp = f(up). In this case the above
equation can be written as

yj(t) =
Bj

Dj
+

(
Aj −

Bj

Dj

)
e−Djt + Sje

−Djt
Pt∑

p=1

wpg(fp)eDjup , (1.20)

where the weights wp arise from the numerical integration method used and, for
example, can be given by the composite Simpson rule. Notice that the dense grid
of function values {fp}P

p=1 does not have associated observed output data. As
discussed shortly the number of discrete time points in which gene expression mea-
surements are available is much sparser that the set of function points.

The TF concentration f(t) in the above system of ODEs is a latent function
that needs to be estimated. Additionally, the kinetic parameters of each gene
αj = (Bj , Dj , Sj , Aj) are unknown and also need to be estimated. To infer these
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quantities we use mRNA measurements (obtained from microarray experiments) of
N target genes at T different time steps. Let yjt denote the observed gene expres-
sion level of gene j at time t and let y = {yjt} collect together all these observations.
Assuming a Gaussian noise for the observed gene expressions the likelihood of our
data has the form

p(y|f , {αj}N
j=1) =

N∏
j=1

T∏
t=1

p(yjt|f1≤p≤Pt ,αj , σ
2
j ), (1.21)

where each probability density in the above product is a Gaussian with mean given
by eq. (1.20), f1≤p≤Pt

denotes the TF values up to time t and σ2
j is a gene-specific

variance parameter. Notice that there are 5 parameters per gene and thus overall
there are 5×N likelihood parameters. The above likelihood function is non-Gaussian
due to the non-linearity of g. Further, the above likelihood does not have a factorized
form, as in the regression and classification cases, since an observed gene expression
depends on the protein concentration activity in all previous times points. Also
note that the discretization of the TF in P time points corresponds to a very dense
grid, while the gene expression measurements are sparse, i.e. P � T .

To apply full Bayesian inference in the above model, we need to define prior
distributions over all unknown quantities. The protein concentration f is a positive
quantity, thus a suitable prior is to consider a GP prior for log f . The kernel function
of this GP prior is chosen to be the squared-exponential kernel, exp(− 1

2`2 (t− t′)2),
where the variance of this kernel, the σ2

f in eq. (1.3), is fixed to one, which helps to
avoid identifiability problems when interacting with the sensitivity parameter Sj .
The lengthscale `2 is assigned a gamma prior. The kinetic parameters of each gene
are all positive scalars and are represented in the log space. These parameters are
given vague Gaussian priors. Each noise variance σ2

j is given a conjugate gamma
prior. Sampling the GP function is done exactly as described in section 1.4; we
have only to plug in the likelihood from eq. (1.21) in the MH step. Sampling
from the kinetic parameters is carried out using Gaussian proposal distributions
with diagonal covariance matrices that sample the positive kinetic parameters in
the log space. Notice also that the kinetics parameters αj for gene j are sampled
independently from the corresponding parameters of all other genes. This is because
the conditional p(α1, . . . ,αN |f) factorizes across different αjs. Finally each noise
variance σ2

j is sampled from its gamma conditional posterior.
We now consider two experiments where we apply the algorithm that uses control

variables (see section 1.4.3) to infer the protein concentration of TFs that activate
or repress a set of target genes. The latent function in these problems is always
one-dimensional and densely discretized and as shown in section 1.6 the algorithm
using control variables is the only one that can converge to the posterior distribution
in a reasonable time.

We first consider the TF p53 which is a tumour repressor activated during DNA
damage. According to Barenco et al. (2006), irradiation is performed to disrupt
the equilibrium of the p53 network and the transcription of p53 target genes are
then stimulated. Seven samples of the expression levels of five target genes in three
replicas are collected as the raw time course data. The non-linear activation of the
protein follows the Michaelis Menten kinetics inspired response (Alon, 2006) that
allows saturation effects to be taken into account so as the g function in eq. (1.18)
takes the form

g(f(t)) =
f(t)

γj + f(t)
, (1.22)
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Figure 1.6: First row: The left plot shows the inferred TF concentration for p53; the small plot
on top-right shows the ground-truth protein concentration obtained by a Western blot experiment
Barenco et al. (2006). The middle plot shows the predicted expression of a gene obtained by the
estimated ODE model; red crosses correspond to the actual gene expression measurements. The
right-hand plot shows the estimated decay rates for all 5 target genes used to train the model. Grey
bars display the parameters found by MCMC and black bars the parameters found in Barenco
et al. (2006) using a linear ODE model. Second row: The left plot shows the inferred TF for
LexA. Predicted expressions of two target genes are shown in the rest two plots. Error bars in all
plots correspond to 95% credibility intervals.

where the Michaelis constant for the jth gene, given by γj , is an additional likelihood
parameter that is inferred by MCMC. Note that since f(t) is positive the GP prior
is placed on the log f(t). Gene expressions for the genes are available for T = 7
different times. To apply MCMC we discretize f using a grid of P = 121 points.
During sampling, 7 control variables were needed to obtain the desirable acceptance
rate. Running time was 4 hours for 5× 105 sampling iterations plus 5× 104 burn-
in iterations. Acceptance rate for f after burn in was between 15% − 25%. The
first row of Figure 1.6 summarizes the estimated quantities obtained from MCMC
simulation.

Next we consider the TF LexA in E.Coli that acts as a repressor. In the re-
pression case there is an analogous Michaelis Menten model (Alon, 2006) where the
non-linear function g takes the form:

g(f(t)) =
1

γj + f(t)
. (1.23)

Again the GP prior is placed on the log of the TF activity. We applied our method
to the same microarray data considered by Rogers et al. (2006) where mRNA mea-
surements of 14 target genes are collected over six time points. The amount of LexA
is reduced after UV irradiation, decreasing for a few minutes and then recovering
to its normal level. For this dataset, the expression of the 14 genes were available
for T = 6 times. Notice that the number of likelihood parameters in this model is
14 × 6 = 84. The GP function f was discretized using 121 points. The result for
the inferred TF profile along with predictions of two target genes are shown in the
second row of Figure 1.6. Our inferred TF profile and reconstructed target gene
profiles are similar to those obtained in Rogers et al. (2006). However, for certain
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genes, our model provides a better fit to the gene profile.

1.8 Dealing with large datasets

The application of GP models becomes intractable when the dimension of the vector
of function values f needed to specify the likelihood is very large. This is because
we need to store a large matrix of size n × n and invert this matrix (see eq. (1.6)
and (1.7)) which scales as O(n3). For regression and classification problems, where
the dimension of f grows linearly with the number of training examples, this is the
well-known problem of large datasets (Csato and Opper, 2002; Smola and Bartlett,
2001; Seeger et al., 2003; Snelson and Ghahramani, 2006; Quiñonero Candela and
Rasmussen, 2005). Notice that GP models become intractable for large datasets
not only in the case of non-Gaussian likelihood functions but also for the standard
regression problem; observe that the posterior GP described by eq. (1.8) and (1.9)
requires the inversion of a n × n matrix. Next we discuss how we can deal with
the problem of large datasets in the context of MCMC inference. Vanhatalo and
Vehtari (2007) have also addressed the same problem.

A simple way to reduce the complexity of the GP model is to decrease the
dimension of f . In problems having facrorizing likelihoods, this implies that we have
to ignore the large majority of the training examples and use only a small subset
of the data. A more advanced strategy is to construct a sparse approximation
based on a carefully chosen set of support or inducing variables (Csato and Opper,
2002; Smola and Bartlett, 2001; Seeger et al., 2003; Snelson and Ghahramani, 2006;
Quiñonero Candela and Rasmussen, 2005; Titsias, 2009). In the context of MCMC,
this framework fits naturally within the sampling scheme that uses control variables
which are exactly analogous to the inducing variables. One way to construct an
approximate GP model that can deal with a very large dimension of f is to modify
the prior p(f). By using a set of auxiliary control variables fc, which are function
points drawn from the GP, we can write p(f) as

p(f) =
∫

p(f |fc)p(fc)dfc. (1.24)

The intractable term in this expression is the conditional distribution p(f |fc) which
has an n × n full covariance matrix: Kf,f − Kf,fcK

−1
fc,fc

K>
f,fc

. Clearly, we can-
not simulate from this conditional Gaussian, because of the prohibitively large full
covariance matrix. Therefore, the algorithm using control variables is not compu-
tationally tractable. To overcome this problem, we can modify the GP prior by
replacing p(f |fc) with a simpler distribution. The simplest choice is to use a delta
function centered at the mean of p(f |fc), given by Kf,fc

K−1
fc,fc

fc. This allows to
analytically marginalize out f and obtain the joint probability model:

q(y, fc) =
∫

p(y|f)δ(f −Kf,fc
K−1

fc,fc
fc)p(fc)df = p(y|Kf,fcK

−1
fc,fc

fc)p(fc). (1.25)

This modified GP model corresponds to the projected process approximation (Csato
and Opper, 2002; Seeger et al., 2003). An MCMC algorithm applied to this model
requires only sampling fc. Further, notice that the control points algorithm (see
Algorithm 1) in this case reduces to the Gibbs-like algorithm. A more advanced
approximation to the GP prior is obtained by the sparse pseudo-inputs GP method
of Snelson and Ghahramani (2006) which is also referred as fully independent
training conditional (FITC) in (Quiñonero Candela and Rasmussen, 2005). Here,
q(f |fc) =

∏n
i=1 p(fi|fc), where each p(fi|fc) is a marginal conditional prior with
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mean K(xi, Xc)K−1
fc,fc

fc and variance k(xi,xi) − K(xi, Xc)K−1
fc,fc

K(Xc,xi). This
approximation keeps only the diagonal elements of the covariance matrix of p(f |fc).
The algorithm using control points can be applied exactly as described in Algo-
rithm 1. Notice that for factorizing likelihoods, the step of sampling f given fc
simplifies to n independent problems since the posterior p(f |fc,y) factorizes across
the dimensions of f , exactly as the prior. This implies that we could also marginal-
ize out f numerically in such case. Extensions of the FITC approximation can be
considered by representing exactly only small blocks of the covariance matrix of
p(f |fc) (Quiñonero Candela and Rasmussen, 2005).

A different approach for sampling in large GP models, is to follow the variational
framework (Titsias, 2009; Csato and Opper, 2002; Seeger et al., 2003). In this
method, the GP prior p(f) is not modified, but instead a variational distribution
is fitted to the exact posterior p(f , fc|y). The variational distribution factorizes as
follows

q(f , fc) = p(f |fc)φ(fc), (1.26)

where the conditional prior p(f |fc) is the one part of the variational distribution,
while the other part, φ(fc), is an unknown (generally non-Gaussian) distribution
that is defined optimally through the minimization of the Kullback-Leibler diver-
gence between q(f , fc) and the exact posterior p(f , fc|y). The optimal setting for
φ(fc) is given by

φ(fc) ∝ p(fc) exp
{∫

p(f |fc) log p(f |y)df
}

, (1.27)

where we assume that the integral inside the exponential can be either computed
analytically or approximated accurately using some numerical integration method.
For instance, for a log Gaussian Cox model (Diggle et al., 1998; Rue et al., 2009) this
integral can be obtained analytically and generally for factorizing likelihoods the
computations involve n independent one-dimensional numerical integration prob-
lems. Given that we can integrate out f in eq. (1.27), we can sample from φ(fc),
using for instance the Gibbs-like algorithm. The whole representation of the vari-
ational distribution in eq. (1.26) will have an analytic part, the conditional prior
p(f |fc), and a numerical part expressed by a set of samples drawn from φ(fc).

Prediction in sparse GP models typically involves some additional approxima-
tions that crucially avoid the computations of intractable terms such as the condi-
tional prior p(f |fc). For instance, the prediction of the function values f∗ in some in-
puts X∗, given by eq. (1.6), can be expressed as p(f∗|y) =

∫
p(f∗|f , fc)p(f , fc|y)dfdfc.

However, p(f∗|f , fc) cannot be computed because of the large dimension of f . Thus,
we need to approximate it by replacing it with p(f∗|fc). This allows to further
marginalize f analytically out of the above Bayesian integral and subsequently use
only the set of samples corresponding to the control variables in order to obtain a
prediction based on Monte Carlo.

1.9 Discussion

Gaussian processes allow for inference over latent functions using a Bayesian non-
parametric framework. In this chapter, we discussed MCMC algorithms that can be
used for inference in GP models. The more advanced algorithm that we presented
uses control variables which act as approximate low dimensional summaries of the
function values that we need to sample from. We showed that this sampling scheme
can efficiently deal with highly correlated posterior distributions.
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MCMC allows for full Bayesian inference in the transcription factor networks
application. An important direction for future research will be scaling the models
used to much larger systems of ODEs with multiple interacting transcription factors.
In such case the GP model becomes much more complicated and several latent
functions need to be estimated simultaneously.

Regarding deterministic versus stochastic inference, in simple GP models with
factorizing likelihoods and small number of hyperparameters, deterministic meth-
ods, if further developed, can lead to reliable inference methods. However, in more
complex GP models having non-factorizing likelihood functions and large number
of hyperparameters, we believe that MCMC is currently the only reliable way of
carrying out accurate full Bayesian inference. Of course, what often decides which
will be the approximate inference method used is the application at hand and the
context of this application. In a mainstream machine learning application involv-
ing large datasets and where fast inference is required, deterministic methods are
usually preferred simply because they are faster. In contrast, in applications re-
lated to scientific questions that need to be be carefully addressed by carrying out
a statistical data analysis, MCMC is preferred.
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