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Gaussian Processes

A Gaussian process (GP) is a distribution over a real-valued
function f (x). It is defined by

a mean function

µ(x) = E (f (x))

and a covariance or kernel function

k(xn, xm) = E (f (xn)f (xm))

E.g. this can be the RBF (or squared exponential) kernel

k(xn, xm) = α exp

(
−||xn − xm||2

2`2

)
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Gaussian Processes

We evaluate a function in a set of inputs (xi )
N
i=1:

fi = f (xi )

A Gaussian process reduces to a multivariate Gaussian
distribution over f = (fi )

N
i=1

p(f) = N(x|0,K ) =
1

(2π)
N
2 |K |

1
2

exp

(
− fTK−1f

2

)
where the covariance K is defined by the kernel function

p(f) is a conditional distribution (a precise notation is p(f|X ))
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Gaussian Processes for Bayesian learning

Many problems involve inference over unobserved/latent functions

A Gaussian process can place a prior on a latent function

Bayesian inference:

Data y = (yi )
N
i=1 (associated with inputs (xi )

N
i=1 )

Likelihood model p(y|f)
GP prior p(f) for the latent function f
Bayes rule

p(f|y) ∝ p(y|f)× p(f)

Posterior ∝ Likelihood× Prior

For regression, where the likelihood is Gaussian, this
computation is analytically obtained
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Gaussian Processes for Bayesian Regression

Data and the GP prior (rbf kernel function)
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Posterior GP process
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Gaussian Processes for non-Gaussian Likelihoods

When the likelihood p(y|f) is non-Gaussian computations are
analytically intractable

Non-Gaussian likelihoods:

Classification problems
Spatio-temporal models and geostatistics
Non-linear differential equations with latent functions

Approximations need to be considered

MCMC is a powerful framework that offers:

Arbitrarily precise approximation in the limit of long runs
General applicability (independent from the functional form of
the likelihood)
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MCMC for Gaussian Processes

The Metropolis-Hastings (MH) algorithm

Initialize f(0)

Form a Markov chain. Use a proposal distribution
Q(f(t+1)|f(t)) and accept with the MH step

min

(
1,

p(y|f(t+1))p(f(t+1))

p(y|f(t))p(f(t))

Q(f(t)|f(t+1))

Q(f(t+1)|f(t))

)
The posterior is highly-correlated and f is high dimensional

How do we choose the proposal Q(f(t+1)|f(t))?
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MCMC for Gaussian Processes

Use the GP prior as the proposal distribution

Proposal: Q(f(t+1)|f(t)) = p(f(t+1))

MH probability

min

(
1,

p(y|f(t+1))

p(y|f(t))

)
Nice property: The prior samples functions with the
appropriate smoothing requirement

Bad property: We get almost zero acceptance rate. The chain
will get stuck in the same state for thousands of iterations
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MCMC for Gaussian Processes

Use Gibbs sampling

Proposal: Iteratively sample from the conditional posterior
p(fi |f−i , y) where f−i = f \ fi

Nice property: All samples are accepted and the prior
smoothing requirement is satisfied

Bad property: The Markov chain will move extremely slowly
for densely sampled functions:

The variance of p(fi |f−i , y) is smaller or equal to the variance
of the conditional prior p(fi |f−i )
But p(fi |f−i ) may already have a tiny variance
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Gibbs-like schemes

Gibbs-like algorithm: Instead of p(fi |f−i , y) use the conditional
prior p(fi |f−i ) and accept with the MH step (it has been used
in geostatistics, Diggle and Tawn, 1998)

Gibbs-like algorithm is still inefficient to sample from highly
correlated functions

Block or region sampling:

Cluster the function values f into regions/blocks {fk}M
k=1

Sample each block fk from the conditional GP prior

p(f
(t+1)
k |f(t)

−k), where f−k = f \ fk and accept with the MH step
This scheme can work better
But it does not solve the problem of sampling highly correlated
functions since the variance of the proposal can be very small
in the boundaries between regions
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Gibbs-like schemes

Region sampling with 4 regions (2 of the proposals are shown
below)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Note that the variance of the conditional priors is small close
to the boundaries between regions
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Sampling using control variables

Let fc be a set of auxiliary function values. We call them
control variables

The control variables provide a low dimensional representation
of f (analogously to the inducing/active variables in sparse GP
models)

Using fc , we can write the posterior

p(f|y) =

∫
fc

p(f|fc , y)p(fc |y)dfc

When fc is highly informative about f, ie. p(f|fc , y) ' p(f|fc),
we can approximately sample from p(f|y):

Sample the control variables from p(fc |y)
Generate f from the conditional prior p(f|fc)
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Sampling using control variables

Idea: Sample the control variables from p(fc |y) and generate
f from the conditional prior p(f|fc)
Make this a MH algorithm: We only need to specify the

proposal q(f
(t+1)
c |f(t)c ), that will mimic sampling from p(fc |y)

The whole proposal is

Q(f(t+1), f
(t+1)
c |f(t), f(t)c ) = p(f(t+1)|f(t+1)

c )q(f
(t+1)
c |f(t)c )

Each (f(t+1), f
(t+1)
c ) is accepted using the MH step

A =
p(y|f(t+1))p(f

(t+1)
c )

p(y|f(t))p(f
(t)
c )

q(f
(t)
c |f(t+1)

c )

q(f
(t+1)
c |f(t)c )
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Sampling using control variables: Specification of
q(f

(t+1)
c |f(t)

c )

q(f
(t+1)
c |f(t)c ) must mimic sampling from p(fc |y)

The control points are meant to be almost independent, thus
Gibbs can be efficient

Sample each fci from the conditional posterior p(fci |fc−i , y)

Unfortunately computing p(fci |fc−i , y) is intractable

But we can use the Gibbs-like algorithm: Iterate between
different control variables i :

Sample f
(t+1)
ci from p(f

(t+1)
ci |f(t)

c−i ) and f(t+1) from

p(f(t+1)|f (t+1)
ci , f

(t)
c−i ). Accept with the MH step

The proposal for f is the leave-one-out conditional prior

p(ft+1|f(t)
c−i

) =

∫
f

(t+1)
ci

p(ft+1|f (t+1)
ci

, f(t)
c−i

)p(f (t+1)
ci

|f(t)
c−i

)df (t+1)
ci
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Sampling using control variables: Demonstration

Data, current f(t) (red line) and current control variables f
(t)
c (red

circles)
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Sampling using control variables: Demonstration

First control variable: The proposal p(f
(t+1)
c1 |f(t)c−1) (green bar)
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Sampling using control variables: Demonstration

First control variable: The proposed f
(t+1)
c1 (diamond in magenta)
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Sampling using control variables: Demonstration

First control variable: The proposed function f(t+1) (blue line)
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Sampling using control variables: Demonstration

First control variable: Shaded area is the overall effective proposal

p(f(t+1)|f(t)c−1)
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Sampling using control variables: Demonstration

Iteration between control variables: Allows f to be drawn with
considerable variance everywhere in the input space.
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Sampling using control variables: Demonstration

Iteration between control variables: Allows f to be drawn with
considerable variance everywhere in the input space.
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Sampling using control variables: Demonstration

Iteration between control variables: Allows f to be drawn with
considerable variance everywhere in the input space.
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Sampling using control variables: Demonstration

Iteration between control variables: Allows f to be drawn with
considerable variance everywhere in the input space.
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Sampling using control variables: Demonstration

Iteration between control variables: Allows f to be drawn with
considerable variance everywhere in the input space.
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Sampling using control variables: Demonstration

Iteration between control variables: Allows f to be drawn with
considerable variance everywhere in the input space.
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Sampling using control variables: Demonstration

Iteration between control variables: Allows f to be drawn with
considerable variance everywhere in the input space.
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Sampling using control variables: Demonstration

Iteration between control variables: Allows f to be drawn with
considerable variance everywhere in the input space.
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Sampling using control variables: Demonstration

Iteration between control variables: Allows f to be drawn with
considerable variance everywhere in the input space.
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Sampling using control variables: Input control locations

To apply the algorithm, we need to select the number M of
control variables and their input locations Xc

Choose Xc using a PCA-like approach

Knowledge of fc must determine f with small error
Given fc the prediction of f is Kf ,cK

−1
c,c fc

Mininimize the averaged error ||f − Kf ,cK
−1
c,c fc ||2

G (Xc) =

∫
f,fc

||f − Kf ,cK
−1
c,c fc ||2p(f|fc)p(fc)dfdfc

= Tr(Kf ,f − Kf ,cK
−1
c,c KT

f ,c)

Minimize G (Xc) w.r.t. Xc using gradient-based optimization

Note: G (Xc) is the total variance of the conditional prior p(f|fc)
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Sampling using control points: Choice of M

To find the number M of control variables

Minimize G (Xc) by incrementally adding control variables
until G (Xc) becomes smaller than a certain percentage of the
total variance of p(f) (5% used in all our experiments)

Start the simulation and observe the acceptance rate of the
chain

Keep adding control variables until the acceptance rate
becomes larger than 25% (following standard heuristics
Gelman, Carlin, Stern and Rubin (2004))
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Sampling using control variables: G (Xc) function

The minimization of G places the control inputs close to the
clusters of the input data in such a way that the kernel function is
taken into account
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Applications: Demonstration on regression

Regression: Compare Gibbs, local region sampling and control
variables in regression (randomly chosen GP functions of
varied input-dimensions: d = 1, . . . , 10, with fixed N = 200
training points)
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Applications: Classification

Classification: Wisconsin Breast Cancer (WBC) and the Pima
Indians Diabetes. Hyperparameters fixed to those obtained by
Expectation-Propagation
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Applications: Transcriptional regulation

Data: Gene expression levels y = (yjt) of N genes at T times
Goal: We suspect/know that a certain protein regulates ( i.e.
is a transcription factor (TF) ) these genes and we wish to
model this relationship
Model: Use a differential equation (Barenco et al. [2006];
Rogers et al. [2007]; Lawerence et al. [2007])

dyj(t)

dt
= Bj + Sjg(f (t))− Djyj(t)

where
t - time
yj(t) - expression of the jth gene
f (t) - concentration of the transcription factor protein
Dj - decay rate
Bj - basal rate
Sj - Sensitivity
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Transcriptional regulation using Gaussian processes

Solve the equation

yj(t) =
Bj

Dj
+Aj exp(−Dj t)+Sj exp(−Dj t)

∫ t

0
g(f (u)) exp(Dju)du

Apply numerical integration using a very dense grid (ui )
P
i=1

and f = (fi (ui ))
P
i=1

yj(t) '
Bj

Dj
+Aj exp(−Dj t)+Sj exp(−Dj t)

Pt∑
p=1

wpg(fp) exp(Djup)

Assuming Gaussian noise for the observed gene expressions
{yjt}, the ODE defines the likelihood p(y|f)
Bayesian inference: Assume a GP prior for the transcription
factor f and apply MCMC to infer (f, {Aj ,Bj ,Dj ,Sj}N

j=1)

f is inferred in a continuous manner (P � T )
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Results in E.coli data: Rogers, Khanin and Girolami
(2007)

One transcription factor (lexA) that acts as a repressor. We
consider the Michaelis-Menten kinetic equation

dyj(t)

dt
= Bj + Sj

1

exp(f (t)) + γj
− Djyj(t)

We have 14 genes (5 kinetic parameters each)

Gene expressions are available for T = 6 time slots

TF (f) is discretized using 121 points

MCMC details:

6 control points are used
Running time was 5 hours for 5× 105 iterations plus burn in
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Predicted gene expressions
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Results in E.coli data: Protein concentration
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Results in E.coli data: Kinetic parameters
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Results in E.coli data: Confidence intervals for the
kinetic parameters
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Data used by Barenco et al. [2006]

One transcription factor (p53) that acts as an activator. We
consider the Michaelis-Menten kinetic equation

dyj(t)

dt
= Bj + Sj

exp(f (t))

exp(f (t)) + γj
− Djyj(t)

We have 5 genes

Gene expressions are available for T = 7 times and there are 3
replicas of the time series data

TF (f) is discretized using 121 points

MCMC details:

7 control points are used
Running time 4 hours for 5× 105 iterations plus burn in
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Data used by Barenco et al. [2006]: Predicted gene
expressions for the 1st replica
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Data used by Barenco et al. [2006]: Protein
concentrations
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Data used by Barenco et al. [2006]: Kinetic parameters
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Summary/Future work

Summary:

A new MCMC algorithm for Gaussian processes using control
variables

It can be generally applicable

Future work:

Deal with large systems of ODEs for the transcriptional
regulation application

Consider applications in geostatistics

Use the G (Xc) function to learn sparse GP models in an
unsupervised fashion without the outputs y being involved


