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Abstract

We consider data which are images containing views of multiple objects.
Our task is to learn about each of the objects present in the images. This
task can be approached as a factorial learning problem, where each image
must be explained by instantiating a model for each of the objects present
with the correct instantiation parameters. A major problem with learning
a factorial model is that as the number of objects increases, there is a
combinatorial explosion of the number of configurations that need to be
considered. We develop a method to extract object models sequentially
from the data by making use of a robust statistical method, thus avoid-
ing the combinatorial explosion, and present results showing successful
extraction of objects from real images.

1 Introduction

In this paper we consider data which are images containing views of multiple objects.
Our task is to learn about each of the objects present in the images. Previous approaches
(discussed in more detail below) have approached this as a factorial learning problem,
where each image must be explained by instantiating a model for each of the objects present
with the correct instantiation parameters. A serious concern with the factorial learning
problem is that as the number of objects increases, there is a combinatorial explosion of the
number of configurations that need to be considered. Suppose there are

�
possible objects,

and that there are � possible values that the instantiation parameters of any one object can
take on; we will need to consider ��������	 combinations to explain any image. In contrast,
in our approach we find one object at a time, thus avoiding the combinatorial explosion.

In unsupervised learning we aim to identify regularities in data such as images. One fairly
simple unsupervised learning model is clustering, which can be viewed as a mixture model
where there are a finite number of types of object, and data is produced by choosing one of
these objects and then generating the data conditional on this choice. As a model of objects
in images standard clustering approaches are limited as they do not take into account the
variability that can arise due to the transformations that can take place, described by in-
stantiation parameters such as translation, rotation etc of the object. Suppose that there are
 different instantiation parameters, then a single object will sweep out a 
 -dimensional
manifold in the image space. Learning about objects taking this regularity into account has

�
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been called transformation-invariant clustering by Frey and Jojic (1999, 2002). However,
this work is still limited to finding a single object in each image.

A more general model for data is that where the observations are explained by multiple
causes; in our example this will be that in each image there are

�
objects. The approach

of Frey and Jojic (1999, 2002) can be extended to this case by explicitly considering the
simultaneous instantiation of all

�
objects (Jojic and Frey, 2001). However, this gives rise

to a large search problem over the instantiation parameters of all objects simultaneously,
and approximations such as variational methods are needed to carry out the inference. In
our method, by contrast, we discover the objects one at a time using a robust statistical
method. Sequential object discovery is possible because multiple objects combine by oc-
cluding each other.

The general problem of factorial learning has longer history, see, for example, Barlow
(1989), Hinton and Zemel (1994), and Ghahramani (1995). However, Frey and Jojic made
the important step for image analysis problems of using explicit transformations of object
models, which allows the incorporation of prior knowledge about these transformations
and leads to good interpretability of the results.

A related line of research is that concerned with discovering part decompositions of objects.
Lee and Seung (1999) described a non-negative matrix factorization method addressing this
problem, although their work does not deal with parts undergoing transformations. There
is also work on learning parts by Shams and von der Malsburg (1999), which is compared
and contrasted with our work in section 4.

The structure of the remainder of this paper is as follows. In section 2 we describe the
model, first for images containing only a single object (

�
2.1) and then for images con-

taining multiple objects (
�
2.2). In section 3 we present experimental results for up to five

objects appearing against stationary and non-stationary backgrounds. We conclude with a
discussion in section 4.

2 Theory

2.1 Learning one object

In this section we consider the problem of learning about one object which can appear at
various locations in an image. The object is in the foreground, with a background behind it.
This background can either be fixed for all training images, or vary from image to image.
The two key issues that we must deal with are (i) the notion of a pixel being modelled
as foreground or background, and (ii) the problem of transformations of the object. We
consider first the foreground/background issue.

Consider an image � of size �������	� containing ��
���� �	���	� pixels, arranged as a length �
vector. Our aim is to learn appearance-based representations of the foreground � and the
background � . As the object will be smaller than � � ��� � pixels, we will need to specify
which pixels belong to the background and which to the foreground; this is achieved by a
vector of binary latent variables � , one for each pixel. Each binary variable in � is drawn
independently from the corresponding entry in a vector of probabilities � . For pixel � , if������� , then the pixel will be ascribed to the background with high probability, and if����� � , it will be ascribed to the foreground with high probability. We sometimes refer to� as a mask.! � is modelled by a mixture distribution:

! ��"$# � � � ! �&%(')� 	 �+* � ! ��%,')��-/.10� 	 24365 � � �7-�98 � ! � %(: � 	 �;* � ! � %(: � -/.108 	 24365 � � �<- (1)



where .10� and .108 are respectively the foreground and background variances. Thus, ignoring

transformations, we obtain � � ��	 � ���������� � � � � � ! � %(' � 	
	 � ��� � � 	 �98 � ! � %(: � 	���
The second issue that we must deal with is that of transformations. Below we consider only
translations, although the ideas can be extended to deal with other transformations such as
scaling and rotation (see e.g. Jojic and Frey (2001)). Each possible transformation (e.g.
translations in units of one pixel) is represented by a corresponding transformation matrix,
so that matrix ��� corresponds to transformation � and ��� � is the transformed foreground
model. In our implementation the translations use wrap-around, so that each ��� is in fact
a permutation matrix. The semantics of foreground and background mean that the mask �
must also be transformed, so that we obtain

� � ��� � � 	 � ������� � ��� � � 	 � � � � ! �&% ��� � � 	 � 	
	 � ��� ��� � � 	 � 	 � 8 � ! �&%(:/� 	��� (2)

Notice that the foreground � and mask � are transformed by ��� , but the background � is
not. In order for equation 2 to make sense, each element of � � � must be a valid probability
(lying in � �<- �  ). This is certainly true for the case when � � is a permutation matrix (and can
be true more generally).

To complete the model we place a prior probability ��� on each transformation ��� ; this is
taken to be uniform over all possibilities so that � � ��	 ���! � ��� �"��� � ��� ��� 	 . Given a data
set # ��$&% , ' � �7- ���(� - * we can adapt the parameters ) � � � - � - � -(. 0� -(.108 	 by maximizing

the log likelihood
� ��) 	 � �+*

$ ����,.-0/ � � ��$
� ) 	 . This can be achieved through using the EM
algorithm to handle the missing data which is the transformation and � .
The model developed in this section is similar to Jojic and Frey (2001), except that our mask� has probabilistic semantics, which means that an exact M-step can be used as opposed
to the generalized M-step used by Jojic and Frey.

2.2 Coping with multiple objects

If there are
�

foreground objects, one natural approach is to consider models with
�

la-
tent variables, each taking on the � values of the possible transformations. We also need
to account for object occlusions. By assuming that the

�
objects can arbitrarily occlude

one another (and this occlusion ordering can change in different images), there are
�21

pos-
sible arrangements. A model that accounts for multiple objects is described in Jojic and
Frey (2001) where the occlusion ordering of the objects is taken as being fixed since they
assume that each object is ascribed to a global layer. A full search over the parameters
(assuming unknown occlusion ordering for each image) must consider � � �31 possibilities,
which scales exponentially with

�
. An alternative is to consider approximations; Ghahra-

mani (1995) suggests mean field and Gibbs sampling approximations and Jojic and Frey
(2001) use approximate variational inference.

Our goal is to find one object at a time in the images. We describe two methods for doing
this. The first uses random initializations, and on different runs can find different objects;
we denote this RANDOM STARTS. The second method (denoted GREEDY) removes
objects found in earlier iterations and looks for as-yet-undiscovered objects in what re-
mains.

For both methods we need to adapt the model presented in section 2.1. The problem is that
occlusion can occur of both the foreground and the background. For a foreground pixel, a
different object to the one being modelled may be interposed between the camera and our
object, thus perturbing the pixel value. This can be modelled with a mixture distribution
as � � � ! � %,' � 	 �54 � * � ! � %(' � -/.10� 	6	 � �7� 4 � 	98�� ! � 	 , where 4 � is the fraction of times



a foreground pixel is not occluded and the robustifying component 8�� ! � 	 is a uniform
distribution common for all image pixels. Such robust models have been used for image
matching tasks by a number of authors, notably Black and colleagues (Black and Jepson,
1996).

Similarly for the background, a different object from the one being modelled may be in-
terposed between the background and the camera, so that we again have a mixture model� 8 � ! �&%(:/� 	 � 4 8 * � ! �&%,:/� -(.108 	 	 � ��� 4 8 	98 � ! � 	 , with similar semantics for the parameter4 8 . (If the background has high variability then this robustness may not be required, but it
will be in the case that the background is fixed while the objects move.)

2.2.1 Finding the first object

With this robust model we can now apply the RANDOM STARTS algorithm by maxi-
mizing the likelihood of a set of images with respect to the model using the EM algorithm.
The expected complete data log likelihood is given by

� � *�
$ ���

 �
� ���
� ��� � � � $ 	 # � � $� 	�� � ,.-0/ � � � 	�� $�� ��	� �

� �
 . 0� � � $
� � � � 	 0 � �
 ,.-0/ . 0��� 	

	 � � � � $� 	 � � ,.-0/ � � � ��� � 	
	�� $ 8 � � �
�
 . 08 � � $ � � 	 0 �

�
 ,.-0/ . 08 � 	 %6	��� ' 5�� - (3)

where � ��� defines the element-wise product between two vectors, � � � is written
as � 0 for compactness and � denotes the � -dimensional vector containing ones. The
expected values of several latent variables are as follows: � ���&� � ��	 � ��� ������� � ���� �!#"%$ � ! ������� � ! �
is the transformation responsibility, � $� is a � -dimensional vector associated with the
binary variables � with each element storing the probability � � 5 � � � � ��$ - � � 	 �� � �'&(�*)(�,+�� � ),-.� � ��/��*)��� � �10 � ) � + � � ) -2� � � /�� ) �435� �768� � �10 � ) � �,9'� � ) - 8 ) � , � $%� �� is the vector containing the robust responsi-

bilities for the foreground on image ��$ using transformation ��� , so that its �;:=< element

is equal to > + * � �@?) -.� � � /�� ) � A�B+ �> + * � � ?) -.� � � /�� ) � A B+ �43C� �D6 > +��FE8� � ?) � and similarly the vector ��$ 8 defines the robust

responsibilities of the background. Note that the latter responsibilities do not depend on
the transformation ��� since the background is not transformed.

All of the above expected values of the missing variables are estimated in the G -step using
the current parameter values. In the H -step we maximise the

�
function with respect to

the model parameters � , � , � - . 0� and .108 . We do not have space to show all of the updates
but for example

�JI *�
$ � �

 �
� � �
� ����� � � $ 	 � �� � � $� � � $�� �� � � $ ��.K

*�
$ ���

 �
� � �
� ����� � � $ 	�� �� � � $� � � $%� ��  - (4)

where ���.K � stands for the element-wise division between two vectors. This update is quite
intuitive. Consider the case when � ����� � ��	 � � for � � � � and � otherwise. For pix-

els which are ascribed to the foreground (i.e. � � $�7L � � $�� � L� 	 � � � ), the values in �
$ are

transformed by � ��7L (which is � 6��� L as the transformations are permutation matrices). This
removes the effect of the transformation and thus allows the foreground pixels found in
each training image to be averaged to produce � .
On different runs we hope to discover objects. However, this is rather inefficient as the
basins of attraction for the different objects may be very different in size given the initial-
ization. Thus we describe the GREEDY algorithm next.



2.2.2 The GREEDY algorithm

We assume that we have run the RANDOM STARTS algorithm and have learned a fore-
ground model � � and mask � � . We wish to remove from consideration the pixels of the
learned object (in each training image) in order to find a new object by applying the same
algorithm. For each example image � we can use the responsibilities � ��� � � ��	 to find the
most likely transformation

� �� .1 Now note that the transformed mask ��� L$ � � obtains values
close to 1 for all object pixels, however some of these pixels might be occluded by other
not-yet-discovered objects and we do not wish to remove them from consideration. Thus

we consider the vector � � � ��� � L$ � � 	 � � � L$� $ . According to the semantics of the robust

foreground responsibilities � � L$� $ , � � will roughly give close to � values only for the non-
occluded object pixels. To further explain all pixels having ��� � 	 � � � we introduce a new
foreground model � 0 and mask � 0 , then for each transformation ��� of model 2, we obtain

� � ��� ��� L$ - � � 	 � ������� � ��� � 	 � * � ! � % ����� L$ � � 	 � -/. 0� $ 	 	
� � � � � 	 � � ����� � 0 	 � � � � ! � % ��� �)� 0 	 � 	
	 � � � ��� � 0 	 � � 8 � ! � %(: � 	 	 �� (5)

Note that we have dropped the robustifying component 8 � ! � 	 from model 1, since the
parameters of this object have been learned. By summing out over the possible transforma-
tions we can maximize the likelihood with respect to � 0 , � 0 , .10� B , � and .108 .
The above expression says that each image pixel ! � is modelled by a three-component
mixture distribution; the pixel ! � can belong to the first object with probability ��� � 	 � ,
does not belong to the first object and belongs to the second one with probability � � �� � 	 � ��� � � 0 	 � , while with the remaining probability it is background. Thus, the search for
a new object involves only the pixels that are not accounted for by model 1 (i.e. those for
which ��� � 	 � � � ).
This process can be continued, so that after finding a second model, the remaining back-
ground is searched for a third model, and so on. The formula for

�
objects becomes

� � ��� � � L$ - ����� - � � L�	� $ - � � 	 � ������� � �
6���

 ���


 6���
� ��� � � � � � 	 � ��� 
 	 � * � ! ��% ��� � L� � 
 	 �&-/. 0� � 	9	

�
6���

 ��� � � � � 
 	 � ����� � � 	 � � � � ! � % �����)� � 	 � 	
	 �

6���

 ��� � � � � 
 	 � � � � ��� � � 	 � � 8 � ! � %,: � 	��� (6)

This is a
� 	 � component mixture at each pixel, where the

� 	 � :=< object is the background.

If  � � then the term
� 
 6��� ��� � � ���

� L�
 	 � is defined to be equal to � . Note that all parameters of
the first

� � � components are kept fixed (learned in previous stages). We always deal with
only one object at a time and thus with one transformation latent variable. This approach
can be viewed as approximating the full factorial model by sequentially learning each factor
(object). A crucial point is that the algorithm is not assumed to extract layers in images,
ordered from the nearest layer to the furthest one. In fact in next section we show a two-
object example of a video sequence where we learn first the occluded object.

Space limitations do not permit us to show the
�

function and updates for the parameters,
but these are very similar to the RANDOM STARTS, since we also learn only the param-
eters of one object plus the background while keeping fixed all the parameters of previously
discovered objects.

1It would be possible to make a “softer” version of this, where the transformations are weighted
by their posterior probabilities, but in practice we have found that these probabilities are usually � for
the best-fitting transformation and � otherwise after learning ��� and ��� .



Mask Foreground * Mask

Mask Foreground * Mask Background
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Figure 1: Learning two objects against a stationary background. Panel (a) displays some
frames of the training images, and (b) shows the two objects and background found by the
GREEDY algorithm.

3 Experiments

We describe three experiments extracting objects from images including up to five movable
objects, using stationary as well as non-stationary backgrounds. In these experiments the
uniform distribution 8�� ! � 	 is based on the maximum and minimum pixel values of all
training image pixels. In all the experiments reported below 4 � and 4 8 were chosen to be� � � . Also we assume that the total number of objects

�
that appear in the images is known,

thus the GREEDY algorithm terminates when we discover the
� :=< object.

The learning algorithm also requires the initialization of the foreground � and background
appearances � , the mask � and the parameters . 0� and . 08 . Each element of the mask � is
initialised to 0.5, the background appearance � to the mean of the training images and the
variances . 0� and . 08 are initialized to equal large values (larger than the overall variance of
all image pixels). For the foreground appearance � we compute the pixelwise mean of the
training images and add independent Gaussian noise with the equal variances at each pixel,
where the variance is set to be large enough so that the range of pixel values found in the
training images can be explored.

In the GREEDY algorithm each time we add a new object  the parameters � 
 , � , � 
 ,.10� � -/.108 are initialized as described above. This means that the background � is reset to
the mean of the training images; this is done to avoid local maxima since the background
found by considering only some of the objects in the images can be very different than the
true background.

Figure 1 illustrates the detection of two objects against a stationary background2. Some ex-
amples of the 44 ����� � 
�� � training images (excluding the black border) are shown in Figure
1(a) and results are shown in Figure 1(b). For both objects we show both the learned mask
and the elementwise product of the learned foreground and mask. In most runs the person
with the lighter shirt (Jojic) is discovered first, even though he is occluded and the person
with the striped shirt (Frey) is not. Video sequences of the raw data and the extracted objects
can be viewed at http://www.dai.ed.ac.uk/homes/s0129556/lmo.html .

In Figure 2 five objects are learned against a stationary background, using a dataset of �7�
images of size ��� � ��� . Notice the large amount of occlusion in some of the training images
shown in Figure 2(a). Results are shown in Figure 2(b) for the GREEDY algorithm.

2These data are used in Jojic and Frey (2001). We thank N. Jojic and B. Frey for making available
these data via http://www.psi.toronto.edu/layers.html.
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Figure 2: Learning five objects against a stationary background. Panel (a) displays some of
the training images and (b) shows the objects learned by the GREEDY algorithm.

Mask Foreground * Mask

Mask Foreground * Mask Background

(a) (b)

Figure 3: Two objects are learned from a set of images with non-stationary background.
Panel (a) displays some examples of the training images, and (b) shows the objects found
by the GREEDY algorithm.

In Figure 3 we consider learning objects against a non-stationary background. Actually
three different backgrounds were used, as can be seen in the example images shown in
Figure 3(a). There were �

�
��� � ��� images in the training set. Using the RANDOM

STARTS algorithm the CD was found in 9 out of 10 runs. The results with the GREEDY
algorithm are shown in Figure 3(b). The background found is approximately the average
of the three backgrounds.

Overall we conclude that the RANDOM STARTS algorithm is not very effective at find-
ing multiple objects in images; it needs many runs from different initial conditions, and
sometimes fails entirely to find all objects. In contrast the GREEDY algorithm is very
effective.

4 Discussion

Shams and von der Malsburg (1999) obtained candidate parts by matching images in a
pairwise fashion, trying to identify corresponding regions in the two images. These can-
didate image patches were then clustered to compensate for the effect of occlusions. We
make four observations: (i) instead of directly learning the models, they match each image
against all others (with complexity ��� * 0 	 ), as compared to the linear scaling with * in
our method; (ii) in their method the background must be removed otherwise it would give
rise to large match regions; (iii) they do not define a probabilistic model for the images
(with all its attendant benefits); (iv) their data (although based on realistic CAD-type mod-
els) is synthetic, and designed to focus learning on shape related features by eliminating
complicating factors such as background, surface markings etc.

In our work the model for each pixel is a mixture of Gaussians. There is some previous



work on pixelwise mixtures of Gaussians (see, e.g. Rowe and Blake 1995) which can, for
example, be used to achieve background subtraction and highlight moving objects against
a stationary background. Our work extends beyond this by gathering the foreground pixels
into objects, and also allows us to learn objects in the more difficult non-stationary back-
ground case. For the stationary background case, pixelwise mixture of Gaussians might be
useful ways to create candidate objects.

The GREEDY algorithm has shown itself to be an effective factorial learning algorithm
for image data. We are currently investigating issues such as dealing with richer classes
of transformations, detecting

�
automatically, and allowing objects not to appear in all im-

ages. Furthermore, although we have described this work in relation to image modelling,
it can be applied to other domains. For example, one can make a model for sequence
data by having Hidden Markov models (HMMs) for a “foreground” pattern and the “back-
ground”. Faced with sequences containing multiple foreground patterns, one could extract
these patterns sequentially using a similar algorithm to that described above. It is true that
for sequence data it would be possible to train a compound HMM consisting of

� 	 � HMM
components simultaneously, but there may be severe local minima problems in the search
space so that the sequential approach might be preferable.

Acknowledgements: CW thanks Geoff Hinton for helpful discussions concerning the idea
of learning one object at a time.
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