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Motivation

I Gaussian processes are used for supervized learning

I Inputs are fixed/deterministic

I Gaussian process latent variable model (GP-LVM) is trained
by optimizing (not marginalizing out) the latent variables

We address the questions:

I How can we train Gaussian process models when inputs are
random (e.g. we have uncertain inputs/missing values)?

I How can we marginalize out the latent variables in GP-LVM?

We will introduce a variational Bayes framework that
provides approximate Bayesian solutions



Outline

I Variational inference for GPs with random
(uncertain/missing/latent) inputs

I The role of auxiliary parameters
I The variational lower bound

I Variational inference for GP-LVM

I Automatic selection of the latent dimensionality with the
squared exponential ARD kernel

I Experiments with GP-LVM

I Summary



Gaussian Processes: Deterministic inputs

I Gaussian process (GP) is used as non-parametric prior over
some function f (x)

I Probability model: Output-input data (y,X ):

p(y, f|X ) = p(y|f)× p(f|X )

Joint = Likelihood×marginal GP on X

where X is assumed deterministic
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But what if the inputs X are random?



Gaussian Processes: Random inputs

I Probability model: As before, but now the
inputs X are given a prior (e.g. Gaussian)
distribution p(X ):

p(y, f,X ) = p(y|f)p(f|X )p(X )
f

y

X

I The posterior distribution p(f,X |y) and the marginal
likelihood p(y) are intractable

I Approximate inference: Can we apply some standard
variational method?



Variational inference: Difficult to apply

I Standard regression with random inputs:

p(y, f,X ) = N (y|f, σ2I )p(f|X )p(X )

p(y, f,X ) = N (y|f, σ2I )
1

(2π)n/2|KNN |1/2
e−

1
2

fT K−1
NN fp(X )

I Applying mean field q(f,X ) = q(f)q(X ) is difficult:

I X appears non-linearly inside the inverse K−1
NN and the

determinant |KNN |
I Seems impossible to compute the variational bound∫

q(f,X ) log p(y,f,X )
q(f,X ) dfdX



Variational inference: Bayesian Linear Regression

Intractability even for the simplest model: Bayesian linear
regression

I Standard parameters:

y = Xw + ε, N(w|0, σ2
w I ), p(X )

I It is straightforward to apply mean field using q(w)q(X )

I Kernelized (non-parametrized):

y = f + ε, N(f|0, σ2
wXXT ), p(X )

I Variational inference using q(f)q(X ) is difficult



Variational inference: Kernelization

I Gaussian processes (kernel methods in general) are somehow
marginalized (collapsed)

I A GP is an exchangeable model:

p(f1, . . . , fN) =

∫ N∏
n=1

p(fn|w)dP(w)

where the underlying (infinite) parameter w has been
integrated out

I We need to place back some (approximate) parameters to
apply variational inference. We will use extra function values
as parameters



Variational inference: The idea

I Initial model:

p(y, f,X ) = N (y|f, σ2I )p(f|X )p(X )

(variational inference in (f,X ) is difficult)
f
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I Augment consistentlya with extra function
values u = (f (z1), . . . , f (zM)):

p(y, f,u,X ) = N (y|f, σ2I )p(f|u,X )p(u)p(X )

(variational inference in (f,u,X ) is tractable)

a
∫

p(f|u, X )p(u)du = p(f|X ), for any value of inputs Z

f
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X
u



Visualization
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I Blue Xs: extra function points u

I Red Xs: inputs of extra function points

I Green curve: function f drawn from p(f|u,X )

I Shaded area: conditional GP prior p(f|u,X )



Visualization
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I You can think of u as a parameter that specifies the function f

I When I use more points in u, p(f|u,X ) becomes more certain,
i.e. the parameter u is more informative

I If the kernel is linear, 2 points (u1, u2) fully specify an 1-D
function (p(f|u,X ) becomes the delta function)



Variational inference

I Initial model:

p(y, f,X ) = N (y|f, σ2I )p(f|X )p(X )

f

y

X

I Augmented model:

p(y, f,u,X ) = N (y|f, σ2I )p(f|u,X )p(u)p(X ) f

y

X
u

We apply variational inference in the space of (f,u,X )



Variational inference

I Variational distribution:

q(f,u,X ) = p(f|u,X )φ(u)q(X )

I q(X ) = N (µ,Σ): Gaussian distribution
I φ(u): unrestricted (turns out to be Gaussian)
I p(f|u,X ): conditional GP prior (trick)

I Maximize the lower bound

log

∫
N (y|f, σ2I )p(f|u,X )p(X )dfduX ≥∫

p(f|u,X )φ(u)q(X ) log
N (y|f, σ2I )p(f|u,X )p(u)p(X )

p(f|u,X )φ(u)q(X )
dfduX

where p(f|u,X )s inside the log cancel
This is now tractable. Matrix inverses containing X are gone



Variational inference

∫
p(f|u,X )φ(u)q(X ) log

N (y|f, σ2I )p(u)p(X )

φ(u)q(X )
dfdudX

I The lower bound is analytically tractable for linear kernels,
squared exponential, exponential, polynomial kernels and
possibly others

I It is maximized jointly over variational parameters and model
hyperparameters



Gaussian process latent variables model (Lawrence, 2005)

I Latent variable model:

y = f(x) + ε

I y ∈ RD : observed variable
I x ∈ RQ (Q � D): latent variable
I f : RQ → RD : latent mapping
I GP-LVM: GP priors on the latent mapping

x

f

y

GP-LVM is trained by optimizing (not marginalizing out) the latent
variables

I Not proper density in the latent space

I Cannot select the latent dimensionality Q

I It may overfit since it is not fully Bayesian



Bayesian Gaussian process latent variables model

I Latent variable model:

y = f(x) + ε

I Bayesian training: Integrate out both the
latent mapping and the latent space

I Exact Bayesian inference is intractable
I But variational Bayesian inference is

tractable

x
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The variational method is applied as before. The only
difference is that now we have D latent functions (one for
each observed output) and not just one



Bayesian Gaussian process latent variables model

Automatic selection of the latent dimensionality

I Squared exponential ARD kernel

k(x, x′) = σ2
f exp

−1

2

Q∑
q=1

αq(xq − x ′q)2


I Maximizing the variational lower bound w.r.t. αqs allows to

remove redundant latent dimensions



Experiments: Visualization

I Oil flow data: 1000 training; 12 dimensions; 3 known classes

I Compare:

I Bayesian GP-LVM
I Standard sparse GP-LVM
I Probabilistic PCA



Experiments: Visualization
Oil flow data
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(αqs) (Bayesian GP-LVM)

I Bayesian GP-LVM runs with 10 latent dimensions

I The red, green and blue points are the predicted means for
the latent variables labeled with the known class

I 7 out 10 latent dimensions are shrunk to zero

I Visualization is shown for the dominant (with the largest
inverse lengthscales) latent dimensions



Experiments: Visualization

Oil flow data
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(Bayesian GP-LVM) (GP-LVM) (PPCA)

GP-LVM and Bayesian GP-LVM are both initialized based on PCA



Experiments: Predict missing values
Frey faces: 1965 images; 28× 20 = 560 dimensions; 1000 for
training; 965 for testing

I Bayesian GP-LVM is trained with 30 latent dimensions, mean
absolute reconstruction error: 7.4003

I Standard sparse GP-LVM is trained with several latent
dimensions: Q = 2, 5, 10, 30. Errors:
10.5748, 9.7284, 19.6949, 19.6961



Experiments: Generative classification

I USPS digits dataset: 16× 16 images for all 10 digits, 7291
training examples and 2007 test examples

I Run 10 Bayesian GP-LVMs: one for each digit

I Compute Bayesian class conditional densities in the test data
of the form p(y∗|Y , digit)

Results: From 2007 test images we have 95 incorrectly classified
digits, i.e. 4.73% error



Summary/Future work

Summary:

I Variational framework to approximately integrate out inputs in
GPs

I Allows for Bayesian training of GP-LVM

Future work:

I Speed up optimization of the variational lower bound

I Learn non-parametric/non-linear dynamical systems using GPs
and variational Bayes


