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Motivation

Many statistical models require inference over high dimensional
discrete spaces:

Sparse regression models using binary inclusion variables indicating
whether the covariates affect the response

Factorial Hidden Markov models involving multiple unobserved
discrete-valued latent chains contributing to a single observation process
(Titsias and Yau NIPS 2014)

Markov random fields

These large data, high-dimensional set-ups are challenging for Markov
Chain Monte Carlo (MCMC) methods (e.g. multimodality in the
posterior is hard to deal with)



Setup

Consider Bayesian inference using MCMC for an unobserved latent
discrete-valued discrete sequence or matrix X ∈ X

Each element xij ∈ {1, . . . ,S}

We have N observations y = [y1, . . . , yN ]

The observations are conditionally independent given X and model
parameters θ so that the joint distribution factorizes as

p(y,X, θ) =

[
N∏
i=1

p(yi |X, θ)

]
p(X, θ)

We assume that the posterior distribution p(X, θ|y) has a complex
dependence structure



Standard Schemes

MCMC schemes, such as a (Metropolis-within) Gibbs Sampler, use

θ ← p(θ|X, y), (1)

X← p(X|θ, y), (2)

or a marginal Metropolis-Hastings sampler over θ based on

θ ← p(θ|y) ∝
∑
X∈X

p(y,X, θ), (3)

are both intractable

Exhaustive summation over the entire state space of X has exponential
complexity



Block Gibbs Sampler

A popular and tractable alternative is to employ block-conditional
(Metropolis-within) Gibbs sampling

Subsets xi of X are updated conditional on other elements being fixed
using

θ ← p(θ|X, y), (4)

xi ← p(xi |X−i , θ, y),∀i , (5)

where X−i denotes the elements excluding those in xi

Typical block structures might be rows/columns of X, when it is a
matrix, or sub-blocks when X is a vector



Pros and Cons of the Block Gibbs Sampler

Block-conditional sampling often admits closed form updates for Gibbs
sampling without resort to Metropolis-Hastings steps

However, major alterations to the configuration of X maybe difficult to
achieve in high dimensional problems

If the elements of X are strongly correlated and/or with θ, conditional
sampling may lead to an inability to escape from local modes

We would like to use larger blocks but the blocks cannot be too large
otherwise we cannot do exhaustive enumeration within blocks



The Hamming Ball Sampler

Consider an augmented joint probability model that can be factorized as

p(y,X, θ,U) = p(y,X, θ)p(U|X)

p(U|X) is a conditional distribution over an auxiliary variable U which
lives in the same space and has the same dimensions as X

p(U|X) is chosen to be an uniform distribution over a neighborhood set
Hm(X) centered at X,

p(U|X) =
1

Zm
I(U ∈ Hm(X)),

where I(·) denotes the indicator function and the normalizing constant
Zm is the cardinality of Hm(X)



The Hamming Ball Sampler

The neighborhood set Hm(X) will be referred to as a Hamming Ball

Defined through Hamming distances so that

Hm(X) = {U : d(ui , xi ) ≤ m, i = 1, . . . ,P}

The term d(xi ,ui ) denotes the Hamming distance
∑

j I(uij 6= xij)

The pairs (ui , xi ) denote non-overlapping subsets of corresponding entries
in (U,X) such that ∪Pi=1ui = U and ∪Pi=1xi = X

The parameter m denotes the maximal distance or radius of each
individual Hamming Ball set (the number of bits we can change at once)



The Hamming Ball Sampler

Example

Pairs can correspond to different matrix columns.

xi will be the i-th column of X

ui the corresponding column of U

The Hamming Ball Hm(X) would consist of all matrices whose columns
are at most m elements different to X



Gibbs Sampling in the Augmented Space

Hamming Ball Sampling is just Gibbs sampling for the augmented joint
probability distribution p(y,X, θ,U)

The target posterior distribution p(X, θ|y) is admitted as a by-product

The Hamming Ball Sampler alternates between the steps:

U← p(U|X), (6)

(θ,X)← p(θ,X|y,U). (7)

The update of (θ,X) can be implemented as conditional (Gibbs) updates
or as a joint M-H step (model-dependent)



Restricted State Space

Conditioning on U has some computational advantages

For example, p(X|θ,U, y) is given by:

p(X|θ,U, y) =
p(y,X, θ)p(U|X)

p(θ,U, y)
∝ p(y,X, θ)I(X ∈ Hm(U))

The normalizing constant is found by exhaustive summation over all
admissible matrices inside the Hamming Ball Hm(U)

We will normally choose m so that the cardinality of Hm(U) will be
considerably less than the cardinality of X

Exhaustive enumeration of all elements inside the Hamming Ball would
be computationally feasible



Algorithm Overview

To summarise:

1. Use an auxiliary variable U to define a slice of the model given by
Hm(U)

2. Sampling of (θ,X) is performed efficiently within this sliced part of
the model through p(θ,X|U, y)

3. At each iteration, this model slice randomly moves via the
re-sampling of U, which simply sets U to a random element from
Hm(X)

The final re-sampling step allows for random exploration that is
necessary to ensure that the overall sampling scheme is ergodic



Algorithm Overview

H1(X
(t)) H1(U

(t+1))

X(t) U(t+1) X(t+1)

⇒
p(U|X)

⇒
p(X|y,U)



General Blocking Scheme

The selection of the subsets or blocks {x1, . . . , xP} will depend on
the conditional dependencies specified by the statistical model

In unstructured models (X is just a large pool of fully dependent
discrete variables), we can divide the variables into randomly
chosen blocks

Exact simulation from p(X|θ,U, y) may not be feasible and instead
we can use the Hamming Balls to sequentially sample each block

This variant of the algorithm can be based on the iteration on P
sequential conditional steps

ui ← p(ui |xi ), xi ← p(xi |X−i , θ,ui , y),∀i . (8)



General Blocking Scheme

Use random subsets of X and apply Hamming Ball Sampling

D
xi xj

K

H
1
(x

i
)

H
1
(x

j
)

Unlike a Block Gibbs Sampler, exhaustive summation is not
necessary within each block ⇒ can choose larger block sizes



Computational Complexity

For P blocks of size K , the computational complexity of the Hamming
Ball Sampler scales with the Hamming radius m, block size K and P
according to O(MP) where

M =
m∑
j=0

(S − 1)j
(
K

j

)

The block Gibbs Sampler has computational complexity of O(SKP)

SK =
K∑
j=0

(S − 1)j
(
K

j

)
and it is only applicable for small values of block size K

Block Gibbs Sampler is a special case of a Hamming Ball Sampler

Hamming Ball sampling is more flexible by allowing control over the
computational cost through both K and m



Computational Complexity and Sampling Efficiency

For fixed blocksize K all Hamming Ball schemes can have radius m ≤ K
(we can visualize this as upper triangular matrix)
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The diagonal elements corresponds to standard Block Gibbs Samplers.
The other ones (m < K ) are pure Hamming Ball schemes



Sparse Linear Regression

We have the N × 1 vector y of responses (normalized to have zero mean)
and the N × D design matrix Z with covariates

The D × 1 latent vector X encodes variable inclusion

xd ∼ Bernoulli(xd , π0), d = 1, . . . ,D, π0 ∼ Beta(π0|απ0 , bπ0)

Responses are generated from a Gaussian linear regression model

y = ZXβX + η, η ∼ N (0, σ2IN),

where ZX is the N × DX design sub-matrix, with columns corresponding
to xd = 1 and βX is the DX × 1 vector of regression coefficients

Conjugate g-prior on βX

p(βX, σ
2|X) = N (βX|0, g(ZT

X ZX)−1)InvGa(σ2|ασ, bσ)



Sparse Linear Regression

Analytically marginalize out the parameters θ = (π0,βx, σ
2) (as in

Bottolo and Richardson, 2010):

p(y,X|·) ∝ C (2bσ + S(X))−(2ασ+N−1)/2
,

where

C = (1 + g)−DX/2Γ(DX + απ0)Γ(D − DX + bπ0),

S(X) = yTy − g

1 + g
yTZX(ZT

X ZX)−1ZT
X y

and Γ(·) denotes the Gamma function



Sparse Linear Regression

1. Randomly initialize X(0) and set t = 0.

2. At iteration t + 1 = 1, . . . ,T randomly divide X into P = D/K
blocks xi . Then for i = 1, . . . ,P

2.1 Sample auxiliary variables u
(t+1)
i from

p(u
(t+1)
i |x(t)i ) =

1∑
u
(t+1)
i ∈Hm(x

(t)
i )

1
,∀u(t+1)

i ∈ Hm(x
(t)
i )

2.2 Sample x
(t+1)
i from

p(y, x
(t+1)
1 , . . . , x

(t+1)
i , x

(t)
i+1, . . . , x

(t)
P |·)∑

x
(t+1)
i ∈Hm(u

(t+1)
i )

p(y, x
(t+1)
1 , . . . , x

(t+1)
i , x

(t)
i+1, . . . , x

(t)
P |·).

We consider schemes with fixed block size K = 10 and Hamming radius
m = 1, 2, 3

Also consider block Gibbs Samplers: jointly sample between 1, 2, 3
elements of X ⇒ special cases of the Hamming Ball algorithm above



Sparse Linear Regression

We simulated a regression dataset with N = 100 responses and
D = 1, 200 covariates

There were two relevant covariates that fully explain the data while the
reminder were noisy redundant inputs

A challenging model exploration problem as only two out of 21200 possible
models represent the possible truth



Sparse Linear Regression



Breast Cancer
Application to 12 tumors from a single breast cancer patient (Zare et. al
2014)

Marginal parameter posteriors for one of the tumor samples:

In the original study, only a single genetic architecture was reported

Here also standard Gibbs get stuck to a single posterior mode and
we cannot conclude the alternative explanation of the data based on its
output

Our analysis suggests that there is ambiguity (multimodality in the
posterior) in the genetic architecture of this particular tumor sample



Conclusions

Hamming Ball Sampling generalizes Block Gibbs Sampling

Adds flexibility in terms of balancing computational complexity and
statistical efficiency

Requires simple changes to pre-existing implementations

HB Sampling makes efficient MCMC inference for these types of models
feasible for large problems (otherwise MCMC may not be viable at all)

Properties not discussed: choice of p(U|X) (is does not have to be
uniform!), M-H extensions, choosing m

More details: Titsias and Yau (2015). The Hamming Ball Sampler. arXiv


