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Abstract

We present a probability distribution over non-negativeeger valued matrices
with possibly an infinite number of columns. We also deriveagisastic process
that reproduces this distribution over equivalence ckasdghis model can play
the role of the prior in nonparametric Bayesian learningyac®s where multiple
latent features are associated with the observed data amdfeature can have
multiple appearances or occurrences within each data.pBinth data arise nat-
urally when learning visual object recognition systemsrfranlabelled images.
Together with the nonparametric prior we consider a liketih model that ex-
plains the visual appearance and location of local imageheat Inference with
this model is carried out using a Markov chain Monte Carlmgtym.

1 Introduction

Unsupervised learning using mixture models assumes tleatadent cause is associated with each
data point. This assumption can be quite restrictive an@fuligeneralization is to consider factorial
representations which assume that multiple causes hawrajed the data [11]. Factorial models
are widely used in modern unsupervised learning algoritheae e.g. algorithms that model text
data [2, 3, 4]. Algorithms for learning factorial models siftbdeal with the problem of specifying
the size of the representation. Bayesian learning and edlyaronparametric methods such as the
Indian buffet process [7] can be very useful for solving thisblem.

Factorial models usually assume that each feature occues ioma given data point. This is inef-
ficient to model the precise generation mechanism of sedatal such as images. An image can
contain views of multiple object classes such as cars andaharand each class may have multiple
occurrences in the image. To deal with features having plalticcurrences, we introduce a prob-
ability distribution over sparse non-negative integemea matrices with possibly an unbounded
number of columns. Each matrix row corresponds to a datat @wid each column to a feature
similarly to the binary matrix used in the Indian buffet pess [7]. Each element of the matrix
can be zero or a positive integer and expresses the numbened & feature occurs in a specific
data point. This model is derived by considering a finite gas®oisson distribution and taking
the infinite limit for equivalence classes of non-negativieger valued matrices. We also present a
stochastic process that reproduces this infinite modek pitcess uses the Ewens’s distribution [5]
over integer partitions which was introduced in populati@metics literature and it is equivalent to
the distribution over partitions of objects induced by thiedhlet process [1].

The infinite gamma-Poisson model can play the role of the pria nonparametric Bayesian learn-
ing scenario where both the latent features and the numlibewfoccurrences are unknown. Given
this prior, we consider a likelihood model which is suitafieexplaining the visual appearance and
location of local image patches. Introducing a prior for fagameters of this likelihood model, we
apply Bayesian learning using a Markov chain Monte Carleri@fce algorithm and show results in
some image data.



2 The finite gamma-Poisson model

Let X = {X;,..., Xy} be some data where each data pdiftis a set of attributes. In section
4 we specifyX,, to be a collection of local image patches. We assume that @aizhpoint is
associated with a set of latent features and each featurbaanmultiple occurrences. Let,
denote the number of times feature@ccurs in the data poinX,,. Given K featuresZ = {z,;} is
a N x K non-negative integer valued matrix that collects toge#tighe z,,; values so as each row
corresponds to a data point and each column to a featuren®iegz,,;, is drawn from a Poisson
with a feature-specific parametgy, Z follows the distribution
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wheremy, = 27]:[:1 znk- We further assume that eagh parameter follows a gamma distribution
that favors sparsity (in a sense that will be explained $jjort
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The hyperparameter itself is given a vague gamma prigr«; ag, 5o ). Using the above equations
we can easily integrate out the parameters} as follows
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which shows that given the hyperparametehe columns ofZ are independent. Note that the above
distribution is exchangeable since reordering the row& afoes not alter the probability. Also as
K increases the distribution favors sparsity. This can bevshay taking the expectation of the sum

of all elements oZ. Since the columns are independent this expectatidii Ef:f:l E(z,;) and
E(znk) is given by
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where N B(z,;7,p), withr > 0 and0 < p < 1, denotes the negative binomial distribution over
positive integers
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that has a mean equal te—r), Using Equation (4) the expectation of the sum:gfs isaN and

is independent of the number of features. Rsincreases/Z becomes sparser amdcontrols the
sparsity of this matrix.

NB(zpi;r,p) =

There is an alternative way of deriving the joint distrilautiP(Z|«) according to the following
generative process:
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where D( ) denotes the symmetric Dirichlet. Marginalizing aitand A gives rise to the same
distribution P(Z|«). The above process generates a gamma random variable atidomigl pa-
rameters and then samples the rowgdhdependently by using the Poisson-multinomial pair. The
connection with the Dirichlet-multinomial pair impliesahthe infinite limit of the gamma-Poisson
model must be related to the Dirichlet process. In the nestig® we see how this connection is
revealed through the Ewens'’s distribution [5].

Models that combine gamma and Poisson distributions arelwapplied in statistics. We point out
that the above finite model shares similarities with the mégplies presented in [3, 4] that model text
data.



3 The infinite limit and the stochastic process

To express the probability distribution in (3) for infiniteamy featureds we need to consider equiv-
alence classes ¢f matrices similarly to [7]. The association of columns4rwith features defines
an arbitrary labelling of the features. Given that the likebdp(X|Z2) is not affected by relabelling
the features, there is an equivalence class of matricealhedn be reduced to the same standard
form after column reordering. We define the left-orderedvf@f non-negative integer valued ma-
trices as follows. We assume that for any possileholdsz,,,. < ¢ — 1, wherec is a sufficiently
large integer. We defink = (215 ... znk) @s the integer number associated with columthat is
expressed in a numeral system with basighe left-ordered form is defined so as the columng of
appear from left to right in a decreasing order accordindngrhagnitude of their numbers.

Starting from Equation (3) we wish to define the probabiliigtidbution over matrices constrained in
a left-ordered standard form. Léf;, be the multiplicity of the column with numbér, for example
Ky is the number of zero columns. An equivalence clagsconsists of%}(' different matri-

ces that they are generated from the distribution in (3) wdhbal probab}ilzitoies and can be reduced
to the same left-ordered form. Thus, the probabilityof is
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We assume that the firsf; features are represented ixe, > 0for k < K, while the restk — K|
features are unrepresented he, = 0 for £ > K. The infinite limit of (6) is derived by following

a similar strategy with the one used for expressing theildigion over partitions of objects as a
limit of the Dirichlet-multinomial pair [6, 9]. The limit tkes the following form:
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wherem = Z,f;l my. This expression defines an exchangeable joint distributi@r non-negative
integer valued matrices with infinite many columns in a taftiered form. Next we present a se-
guential stochastic process that reproduces this disiwiu

3.1 The stochastic process

The distribution in Equation (7) can be derived from a simgiechastic process that constructs
the matrixZ sequentially so as the data arrive one at each time in a fixder.olhe steps of this
stochastic process are discussed below.

When the first data point arrives all the features are curyamkepresented. We sample feature
occurrences from the set of unrepresented features asvillBirstly, we draw an integer number
g1 from the negative binomiaN B(g;; «, %) which has a mean value equal do ¢; is the total
number of feature occurrences for the first data point. Giygrwe randomly select a partition
(211, .., 21K, ) of the integerg; into partd, i.e.z;y + ... + 215, = g1 and1 < K; < gy, by
drawing from Ewens’s distribution [5] over integer pauitis which is given by
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Wherevgl) is the multiplicity of integer: in the partition(z11, ..., 21k, ). The Ewens’s distribution
is equivalent to the distribution over partitions of obgatduced by the Dirichlet process and the
Chinese restaurant process since we can derive the oneli@uother using simple combinatorics
arguments. The difference between them is that the formeistribution over integer partitions
while the latter is a distribution over partitions of object

Let K,,_1 be the number of represented features whemthedata point arrives. For each feature
k,with k < K,,_1, we choose,,;, based on the popularity of this feature in the previous 1 data

1The partition of a positive integer is a way of writing this integer as a sum dfipeintegers where order
does not matter, e.g. the partitions of 3 are: (3),(2,1) and (1,1,1).



points. This popularity is expressed by the total numberaziuorences for the featude which is
1

given bymy, = >~ z;,. Particularly, we draw,,;, from N B(z,,;; mu, nil) which has a mean
value equal to=. Once we have sampled from all represented features we oeeahtider a
sample from the set of unrepresented features. Similarlyedfirst data point, we first draw an
integerg,, from N B(gy,; «, n+1) and subsequently we select a partition of that integer bwihg

from the Ewens’s formula. This process produces the folgwdistribution:
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where{v§">} are the integer-multiplicities for theth data point which arise when we draw from
the Ewens'’s distribution. Note that the above expressi@s thot have exactly the same form as the
distribution in Equation (7) and is not exchangeable sihakpends on the order the data arrive.
However, if we consider only the left-ordered class of nu&tsi generated by the stochastic process
then we obtain the exchangeable distribution in Equatign Note that a similar situation arises
with the Indian buffet process.

3.2 Conditional distributions

When we combine the prioP(Z|«) with a likelihood modelp(X|Z) and we wish to do in-
ference overZ using Gibbs-type sampling, we need to express the conditoof the form
P(znk|Z_(niy, ) Where Z_,1y = Z \ z,,. We can derive such conditionals by taking limits
of the conditionals for the finite model or by using the statltaprocess.

Suppose that for the current value &f there exist/, represented features i.e1;, > 0 for
k < Ky Letm_np, = > 5 , zak. Whenm_, , > 0, the conditional ofz, is given by
NB(zpk; M—n NLH). In all different cases, we need a special conditional thatges from
new featuresand accounts for alt such thatn_,, ,, = 0. This conditional draws an integer num-
ber fromN B(g,; a, N+1) and then determines the occurrences for the new featuresdnsing a

partition of the integey,, using the Ewens'’s distribution. Finally the conditiopédv|Z), which can
be directly expressed from Equation (7) and the priotpis given by
«

Ky
p(O{lZ) X g<a7 aOvﬁO)W.

Typically the likelihood model does not depend@and thus the above quantity is also the posterior
conditional ofa given data and’.

(10)

4 A likelihood model for images

An image can contain multiple objects of different classéach object class can have more than
one occurrences, i.e. multiple instances of the class mpgaasimultaneously in the image. Un-
supervised learning should deal with the unknown numbeb@ai classes in the images and also
the unknown number of occurrences of each class in each isggg@ately. If object classes are the
latent features, what we wish to infer is the underlying dieatoccurrence matrig. We consider
an observation model that is a combination of latent Digtlalllocation [2] and Gaussian mixture
models. Such a combination has been used before [12]. Eadeimis represented by,, local
patches that are detected in the image s&as= (Y,,,W,,) = {(¥yni> Wni), i = 1,...,dn}. Yni

is the two-dimensional location of patélandw,,; is an indicator vector (i.e. is binary and satisfies
Zle w’, = 1) that points into a set of. possible visual appearanceX., Y, andW denote all
the data the locations and the appearances, respectivelywil\tescribe the probabilistic model
starting from the joint distribution of all variables whichgiven by

joint = p(c) P(Z])p({01}|2) x
N dy,
H p(ﬂ'n|Zn>p(mn72n|Zn)HP(Snz|7Tn)P(an|Snza{gk})p(ynz|snzamn7zn) . (11)
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2Features of this kind are the unrepresented features ;) as well as all the unique features that occur
only in the data point (i.e.m_,_, = 0, butz,; > 0).



Figure 1: Graphical model for the joint distribution in Edias (11).

The graphical representation of this distribution is degicin Figure 1. We now explain all the
pieces of this joint distribution following the causal stture of the graphical model. Firstly, we
generatex from its prior and then we draw the feature occurrence maffixising the infinite
gamma-Poisson prioP(Z|«). The matrixZ defines the structure for the remaining part of the
model. The parameter vect8f, = {01, ..., 0} describes the appearance of the local patéhies
for the feature (object clas#) Each@; is generated from a symmetric Dirichlet so as the whole

set of {0} vectors is drawn fronp({0:}|2) = Hngl D(0y|v), where is the hyperparameter of
the symmetric Dirichlet and it is common for all features.télthat the feature appearance param-
eters{6;} depend orZ only through the number of represented featukgswhich is obtained by
counting the non-zero columns &f

The parameter vectar,, = {m,;;} defines the image-specific mixing proportions for the migtur
model associated with image To see how this mixture model arises, notice that a localrpert
imagen belongs to a certain occurrence of a feature. We use the eaondéxk;j to denote the

occurrence of featuré wherej = 1,..., 2, andk € {% D 2E > 0}. This mixture model has
M, = ZkKjl zZnk COMponents, i.e. as many as the total number of feature i@rmes in image.

The assignment variablg,; = {sfg}, which takesM,, values, indicates the feature occurrence of
patchi. m, is drawn from a symmetric Dirichlet given by(=,|Z,,) = D(x,|8/M,), whereZ,
denotes thexth row of Z andj is a hyperparameter shared by all images. Notice #hatiepends
only on thenth row of Z.

The parameterém,,, X,,) determine the image-specific distribution for the locasidw,,; } of the
local patches in image. We assume that each occurrence of a feature forms a Gaudsser
of patch locations. Thusg,,; follows a image-specific Gaussian mixture with, components. We
assume that the componénthas meam,,;; and covarianc&, ;. m,,; describes object location
andX,;; object shapem,, andX,, collect all the means and covariances of the clusters image
n. Given that any object can be anywhere in the image and héieaay scale and orientation,
(myj, Xni;) Should be drawn from a quite vague prior. We use a conjugataaiéNishart prior
for the pair(m,,;, X,;) SO as

Znk

p(mna En‘Zn) = H H N(mnkj‘ﬂaTanj)W(E;klﬂUy V)a (12)

kizpr>07=1
where(u, 7,v, V') are the hyperparameters shared by all features and imagesassignment,,;
which determines the allocation of a local patch in a certeature occurrence follows a multino-
mial: P(spilmn) = [li... >0 Hj“z"“l(wnkj)sg. Similarly the observed data paiw.,;,y.;) of a
local image patch is generated according to
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and
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The hyperparametersy, 3, u, 7,v, V') take fixed values that give vague priors and they are not
depicted in the graphical model shown in Figure 1.

Since we have chosen conjugate priors, we can analyticadigimalize out from the joint distri-
bution all the parametergr,,}, {0x}, {m,} and{%, } and obtainp(X, S, Z, o). Marginalizing

out the assignmentS is generally intractable and the MCMC algorithm discussextt produces
samples from the posterid?(.S, Z, a|X).

4.1 MCMC inference

Inference with our model involves expressing the posteR06, Z, | X) over the feature occur-
rencesZ, the assignment§' and the parametex. Note that the jointP(S, Z, o, X) factorizes
according top(«) P(Z|a) P(W|S, Z) Hﬁ;l P(S,|Z:)p(Ys|Sn, Z,) whereS,, denotes the assign-
ments associated with image Our algorithm uses mainly Gibbs-type sampling from candél
posterior distributions. Due to space limitations we byieliscuss the main points of this algorithm.

The MCMC algorithm processes the rowsXfiteratively and updates its values. A single step can

change an element &f by one so as"¢* — 22| < 1. Initially Z is such that\/,, = Zf;l Znk >
1, for anyn which means that at least one mixture component explainddteeof each image. The
proposal distribution for changing, ;s ensures that this constraint is satisfied.

Suppose we wish to sample a new valuezgr using the joint modeb(S, Z, o, X). Simply witting
P(2nk|S, Z_(nry, o, X) is not useful since when,;, changes the number of states the assignments
S,, can take also changes. This is clear singgis a structural variable that affects the number of

componentsV/,, = ZkK:*l zni Of the mixture model associated with imagend assignments,, .
On the other hand the dimensionality of the assignménts = S \ S,, of all other images is not
affected when,,;, changes. To deal with the above we marginalize$uand we sample,,;, from
the marginalized posterior conditionBYz,,|S_ ., Z_(,.1), ., X' ) Which is computed according to

P(an|S,n,Z,(nk),Oé,X) OCP(an|Z7(nk)aa)ZP(W|Sa Z)p(yn|snyzn)P(Sn|Zn)a (13)
Sn

whereP(z,x|Z_, i, ) for the infinite case is computed as described in section Bi2womputing
the sum requires an approximation. This sum is a marginelitikod and we apply importance
sampling using as an importance distribution the postedmditional P(.S,,|S_,, Z, W,Y,,) [10].
Sampling fromP(S,,|S_,, Z, W,Y,,) is carried out by applying local Gibbs sampling moves and
global Metropolis moves that allow two occurrences of défg features to exchange their data
clusters. In our implementation we consider a single samge/n from this posterior distribution
so that the sum is approximated B(W S}, S_,, Z)p(Y,|S%, Z,) and S is a sample accepted
after a burn in period. Additionally to scans that upddtand.S we add few Metropolis-Hastings
steps that update the hyperparameta@ising the posterior conditional given by Equation (10).

5 Experiments

In the first experiment we use a set 4f artificial images. We consider four features that have
the regular shapes shown in Figure 2. The discrete patchaggpees correspond to pixels and
can take20 possible grayscale values. Each feature has its own muaitaiaistribution over the
appearances. To generate an image we first decide to incaatefeature with probability.5.
Then for each included feature we randomly select the numib@ecurrences from the rangg 3].

For each feature occurrence we select the pixels using theaapnce multinomial and place the
respective feature shape in a random location so that feattgurrences do not occlude each other.
The first row of Figure 2 shows a training image (left), theatens of pixels (middle) and the
discrete appearances (right). The MCMC algorithm wasdh#ed with K, = 1, « = 1 and
zZn1 = 1,n = 1,...,10. The third row of Figure 2 shows hov, (left) and the sum of alkt,,;.S
(right) evolve through the firsi00 MCMC iterations. The algorithm in the fir&0 iterations has
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Figure 2: The first row shows a training image (left), the kimas of pixels (middle) and the discrete
appearances (right). The second row shows the localizatdrall feature occurrences in three
images. Below of each image the corresponding roW @ also shown. The third row shows how
K (left) and the sum of alt,,;.s (right) evolve through the first)0 MCMC iterations.

Figure 3: The left most plot on the first row shows the locagiofidetected patches and the bounding
boxes in one of the annotated images. The remaining five plates examples of detections and

localizations of the three most dominant features (inclgdhe car-category) in five non-annotated
images.



visited the matrixZ that was used to generate the data and then stabilizes6%oof the samples
K is equal to four. For the sta{e?, .S) that is most frequently visited, the second row of Figure
2 shows the localizations of all different feature occucesin three images. Each ellipse is drawn
using the posterior mean values for a pait,,;, ¥,x;) and illustrates the predicted location and
shape of a feature occurrence. Note that ellipses with theegmlor correspond to the different
occurrences of the same feature.

In the second experiment we consider 25 real images from tbkC8lcars database. We used the
patch detection method presented in [8] and we constructictianary of 200 visual appearances
by clustering the SIFT [8] descriptors of the patches usiagé&ans. Locations of detected patches
are shown in the first row (left) of Figure 3. We partially ldled some of the images. Particularly,
for 7 out of 25 images we annotated the car views using bognidaxes (Figure 3). This allows
us to specify seven elements of the first column of the matr{¥h2 first feature will correspond
to the car-category). Thesg;s values plus the assignments of all patches inside the looxast
change during sampling. Also the patches that lie outsiddtxes in all annotated images are not
allowed to be part of car occurrences. This is achieved byyamgppartial Gibbs sampling updates
and Metropolis moves when sampling the assignmg&nighe algorithm is initialized with, = 1,
after 30 iterations stabilizes and then fluctuates betwé@snto twelve features. To keep the plots
uncluttered, Figure 3 shows the detections and localizatid only the three most dominant features
(including the car-category) in five non-annotated imadgéee red ellipses correspond to different
occurrences of the car-feature, the green ones to a tréerdeand the blue ones to a street-feature.

6 Discussion

We presented the infinite gamma-Poisson model which is aarangetric prior for non-negative
integer valued matrices with infinite number of columns. Vi&cdssed the use of this prior for
unsupervised learning where multiple features are aswutiaith our data and each feature can
have multiple occurrences within each data point. The it€figamma-Poisson prior can be used for
other purposes as well. For example, an interesting agjgitaan be Bayesian matrix factorization
where a matrix of observations is decomposed into a produsteor more matrices with one of
them being a non-negative integer valued matrix.
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