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Abstract

It is well known that maximum likelihood fails to account for model complex-
ity. We show that in graphical models with hidden variables, the expected complete
data log likelihood, or � function, used in the operation of the EM algorithm can
penalise too complex hidden structures and thus it may be used either as a model
selection criterion or as an objective function that we wish to maximise. We ap-
ply the � function as a model selection criterion to the mixture models and factor
analysis model fitted using EM. Also we maximise the � function itself in the case
of Gaussian mixture models and derive an EM-type algorithm that automatically
adjusts model parameters and number of mixture components. We demonstrate
these ideas to some data sets.

1 Introduction
We address the problem of learning graphical models with hidden variables from data,
where the hidden structure is unknown. The typical way of training a model with a fixed
hidden structure is by maximising the likelihood using the EM algorithm (Dempster
et al., 1977). However, a fundamental problem of maximum likelihood method is that
it cannot account for model complexity since more flexible models can always increase
the likelihood of the data, but the model is prone to ovefitting. The Bayesian method
(Mackay, 1992; Heckerman et al., 1995) can in principle overcome these difficulties
by integrating over parameters (models) and computing the marginal likelihood. This
computation is generally intractable and is approximated according to several schemes.
Chickering and Heckerman (1997) provide a comparison over several approximations
of the marginal likelihood including the Laplace and BIC/MDL approximation. More
recently Attias (1999) and Ghahramani and Beal (2000) have applied variational ap-
proximations.

In this paper we consider a different than the Bayesian approach to the hidden struc-
ture learning that is rather simple and easy to apply. We have made the observation that
the expected complete data log likelihood used in the operation of the EM algorithm
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can account for model complexity concerning the hidden variables. This is because the�
function decomposes into two terms: the log likelihood term and ii) the conditional

entropy of the hidden variables given the observations. On one hand the log likelihood
expresses how well the model fits the data, so it can account for a misfit term. On the
other hand the entropic term measures how well the hidden variables are determined
by the observations and thus it can account for a model complexity term by penalising
over-flexible hidden structures. We consider the

�
function as a criterion for selecting

among models trained by maximum likelihood and we apply this framework to mixture
models and factor analysis. Furthermore, we consider the

�
function as an objective

function that we wish to maximise and we derive an EM-type algorithm for Gaussian
mixture models that automatically adjusts model parameters and number of mixture
components.

The remainder of the paper is structured as follows: In section 2 we discuss the
�

function as a criterion for selecting the hidden structure and we apply this to mixture
models and factor analysis. In section 3 we derive an EM-type algorithm for Gaussian
mixtures that directly maximises the

�
function. In section 4 we provide experiments

with Gaussian mixtures and factor analysers to some data sets and we conclude with a
discussion in section 5.

2 The � function
Let �����
	��� denote all the data and ���������� the set of hidden variables. Also
assume that the joint distribution ����������� �! is computed by making use of a set of
conditional independences represented by a graphical model (either with directed or
undirected links). � stands for the model and refers to any structural choice we made
concerning the hidden variables, such as the connection links, number of hidden vari-
ables and how many values a discrete hidden variable can take.

Fitting the model to the data by maximising the likelihood can little say about how
suitable was the original choice of the hidden structure � . The maximum likelihood
approach cannot account for model complexity since more flexible hidden structures
can always provide higher likelihood value.

A way to penalise flexible hidden structures is to measure how the data change
the distribution of the hidden variables; if many alternative hidden values appear to be
plausible explanations of the observations, then the model probably has a too complex
hidden structure and a simpler hidden structure can be found. Such a measure is the
entropy of the hidden variables � conditioned on the data � :"$# �&%('*)&���+�,� ���*�! .-0/213���+�,� ���*�! �� (1)

where the sum can when appropriate be replaced by an integral. Next we refer to the
above quantity as the posterior entropy of the hidden variables or simply posterior en-
tropy. When the hidden values are well determined by the observations, the conditional
distribution �4�5��� ���6�! should be fairly deterministic, which would result in low pos-
terior entropy. On the other hand an ambiguous distribution �4�+�,� ���6�! would result in
high posterior entropy. Generally, we expect models with simple hidden structures to
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have lower posterior entropy than more flexible models.
" #

by itself cannot indicate
which model is appropriate for the data, since models with too simple hidden structure,
that do not fit the data, might give low entropy but are inappropriate. A reasonable ap-
proach for model selection should penalise also underfitting of the data by considering
a misfit measure. Such a measure can be the log likelihood78# �9-:/;1<' ) �4�=���*�,� �! >� (2)

which we would like to be maximised. Finally since we wish the log likelihood to
be maximised and the posterior entropy to be minimised a criterion for selecting the
hidden structure can be the following� # � 7 # % " # (3)

or � # � '*) ���+�,� ���*�! �-0/21?�4�=���*�,� �! �@ (4)

Clearly 3 is the expected complete data log likelihood, or
�

function, used in the oper-
ation of the EM algorithm. The above justifies the use of the

�
function as a criterion

for hidden structure selection. A framework for applying the above idea would be to
first find a parameter value AB that locally maximises the log likelihood for any candidate
hidden structure � and then assign a preference to that model by the valueC # � A78# % A"$# � (5)

where A7 # and A" # are estimated for the parameter values AB . Preferred models are
those that have the highest values

C #
. In section 2.1 and 2.2 we apply this criterion to

mixture models and factor analysis.

2.1 Mixture models
A mixture model is a weighted average of densities:

�4�=	� D� E'F*G4HJI F �4�=	�� �K (6)

where � is a discrete hidden variable and I F the corresponding prior probability. The
number L of mixture components is the structural choice that we have to make about
the model. For fixed L and given a set of i.i.d. data �M�N�
	 H �
@O@O@O�P	RQ, we can
maximise the log likelihood using the EM algorithm in order to deal with the hidden
variables �S�T��� H �O@
@O@
�U�KQV . However as expected the log likelihood increases with
the number of components L . According to our model selection approach, if AB is a set
of parameters obtained by maximising the log likelihood for a mixture model with L
components, then we can assign a preference to that model byC E � Q'W2G4H -0/21 A����	 W  YX Q'WZG4H E'F*G4H A[ �=�\� 	 W  �-0/21 A[ �]��� 	 W  �� (7)
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where
[ �]��� 	� is the responsibility[ �]��� 	� ^� I F �4�=	�� �K �4�=	� @ (8)

The first term in 7 is the log likelihood and the second is the negative posterior entropy.
The above equation is very intuitive; the log likelihood term expresses how well the
model explains the data while the entropic term expresses how well the model separates
the data to the L assumed clusters. As L becomes larger than the number of true clusters
in our data, the components will overlap causing an increase of the posterior entropy
that will penalise the log likelihood.

However the candidate values of L must be much less than the number of training
points _ , since if L`�a_ and each component fit a data point, the entropy will become
zero and the log likelihood infinitely large. Roughly speaking this is because the

�
function does not explicitly penalise the parameter space.

2.2 Factor analysis
In the factor analysis model (Everitt, 1984), a b -dimensional vector of real values 	
is considered to be generated by taking the linear transformation of a c -dimensional
vector � , where c is smaller that b , and adding some Gaussian independent noise. The� values are the hidden variables or factors. The data point 	 is generated by	d�feg�hXji (9)

where e is the factor loading matrix, the factors � are assumed to be _j�]�lk6mJ�Unpop dis-
tributed and the random variable i is distributed according to _j�=iqkUml�*r. with r being
diagonal. By marginalising out � the resulting distribution of 	 is Gaussian with zero
mean and covariance egetsuXfr . The learning objective in factor analysis is given a
set of i.i.d. data �v�w�
	 H �O@
@O@>�U	RQ, to find the parameters e and r that best ex-
plain these data. The EM algorithm can be used to deal with the hidden variables�a�!�x� H @O@
@O@O�6�;Qy and provide a local maximum of the likelihood (Rubin and Thayer,
1982). The posterior distribution of the hidden factor � given the observation 	 is�4�]��� 	� ^�9_j�=e s �5rzX{ege s  �| H 	Y�x�=e s r�| H e{Xjn� *| H  (10)

where the covariance matrix is independent on the observation 	 .
The structural parameter that we have to specify when we apply the above model

is the dimensionality c of the factors. Ghahramani and Beal (2000) have applied the
Bayesian method with variational approximation to infer the dimensionality of the fac-
tors. Next we apply the

�
function as the criterion for selecting the dimensionality of � .

The log likelihood in the factor analysis model is
7 ot�~} QWZG4H -0/21D_{��	 W k6mJ�6egegs�X�r. ,

while the entropy of the factors conditioned on the observations is" oV�!% Q'WZG�H � ���=�\� 	 W  �-:/;13�4�]��� 	 W  >@ (11)
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Since �4�=�\� 	� is Gaussian, its differential entropy has a nice closed form and equalsH� -0/21,�U�+� I  o ���]egsqr | H e{X{n� | H � � , thus we finally obtain" o � _ � -:/;1 � �]� I  o �:�=e s r�| H ezX{nK �| H � � @ (12)

We can now plug in the above entropy and the log likelihood in the equation 5 and
obtain the criterion for selecting the dimensionality c . The parameter values for a
certain c can be estimated by maximising the log likelihood using the EM algorithm.
The intuition behind the above criterion lies in the behaviour of the entropic term as
that varies with respect to the dimensionality c . The entropy expresses how broad the
posterior Gaussian �4�=�\� 	� is. As we overfit the number of factors we expect the factors
to overlap each other in the light of data, which causes the posterior �4�=�\� 	� to become
uncertain with large entropy.

3 The � function as an objective function
If the

�
function can account for model complexity of the hidden structure, then we can

make a step further and attempt to maximise the
�

function itself instead of maximising
the log likelihood. Potentially this can allow us to optimise simultaneously parameters
and hidden structure. Below we apply this to Gaussian mixtures.

The EM algorithm in the � -step of each iteration maximises the
�

function by
considering fixed the distribution of the hidden variables given the observations, which
do not maximise the

�
function in general. We can see the general problem of this

maximisation as penalised maximum likelihood� # � B  8� 7 # � B  q% " # � B  �� (13)

where we explicitly view all the quantities as a function of the parameters
B
. If the

entropic term is a highly non linear function over
B
, then the above maximisation gen-

erally would be much more difficult that maximising the log likelihood.
Assume a mixture model of the form 6 where the component densities are Gaus-

sians: �4��	�� �� ^�f_j��	4kP� F �*� F  . According to the above framework we wish to train the
model by maximising the function� � B  ^� Q'WZG4H -:/;1 E'F*G4HJI F _j��	 W kP� F �*� F  YX Q'WZG4H E'F6G�H [ �]��� 	 W  �-0/21 [ �=�\� 	 W  �@ (14)

By differentiating with respect to the parameters
B ���
�3�p���^�2� I �Z E� G4H and setting to

zero we can arrive at the following fixed point equations

������� HP�F � } QWZG4Hp� [ ��� � �]��� 	 W  3Xf�]� WF  ��� �+� 	 W} QWZG4HZ� [ �:� � �=�\� 	 W  YX9�+� WF  ��� � � � (15)

� �:��� H��F � } QWZG4H2� [ ��� � �=�\� 	 W  YXf�]� WF  ��� �+� ��	 W %u� �:��� H��F  O��	 W %u� ����� H��F  Ps} QWZG4H2� [ ��� � �=�\� 	 W  YXf�]� WF  ��� � � � (16)
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I �:��� H��F ���_ Q'WZG4H � [ ��� � �]��� 	 W  4X9�+� WF  ��� � � � (17)

where � WF � [ �=�\� 	 W  .�+-:/;1 [ �=�\� 	 W  �% E' � G4H [ �=�>� 	 W  �-0/21 [ �=��� 	 W  5��@ (18)

The above equations differ from the respective EM updates for maximum likelihood
only that now we have the term � W� instead of the responsibility

[ �=�\� 	 W  itself. The � W�
values can be positive or negative and satisfy } EF6G�H � WF ��m for each training point1.
The value � WF becomes large when the corresponding component explains the data point	 W with large responsibility. For instance, if we have four components and for some 	 W
the responsibilities are: mJ@ � , mJ@ � , mJ@ � and m respectively, the corresponding � WF would
be: ml@ �2� , %�mJ@ m2� , %�ml@ �
� and m . Also note that the regularisation mechanism is only
active when the model fails to separate well the data to L clusters; if for a data point	 W one component has responsibility value equal to 1, then all the � WF values are zero.

We apply iteratively equations 15-17 by starting from a large number of compo-
nents and as the algorithm evolves some components die and are discarded from the
mixture model. A component � dies if its prior I F becomes zero or negative. So in
each iteration of the algorithm we identify the alive components � having I F�� m , we
discard the rest of them from the mixture model and also renormalise the priors if at
least one component is discarded. Additionally, in each iteration as in the maximum
likelihood training we must ensure that the covariance matrices are positive definite2.

Someone can ask what is the difference between applying the
�

function as a model
selection criterion for models trained by maximum likelihood and maximising directly
this function. Clearly, even if the selected hidden structure is the same for both frame-
works the parameter estimates might differ. This is because the latter framework esti-
mates the parameters by simultaneously maximising the log likelihood and minimising
the posterior entropy.

4 Experiments
We tested the methods on two clustering problems and one factor analysis problem. In
each case

�
is applied as a model selection criterion, we maximise the likelihood 5

times for each candidate model under different parameter initialisations and select the
parameters that give the larger likelihood value to stand for that model. In addition,
in the case of Gaussian mixtures where we also maximise the

�
function directly, we

perform 10 maximisations of the
�

function by starting always from �Zm components
and select the parameters that give the larger

�
value.

The first problem is a synthetic data set of 500 two-dimensional data points forming
5 clusters (Figure 1a, left). The candidate models are from 1 to 15 components. Figure

1Because of that property the denominator in �K  update remains the number of training points ¡ , as in
the EM for maximising the log likelihood.

2Note that since the value ¢<£0¤Z¥ ¦2§K¨�©6ª« can be also negative a covariance matrix can also take negative
eigen values. However this occurs for the dying components that receive negative © ª« values from many
different data points.
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Figure 1: a) From left to right: the synthetic 2-dimensional data, the log likelihood, the
posterior entropy and the

�
function with respect to the number of components. b) The

state of the algorithm for maximising the
�

function after: initialisation, 3 iterations,
10 iterations and convergence.

1a displays the log likelihood, the posterior entropy and the
�

function with respect
to the number of components. Clearly the

�
function achieves the maximum at 5

components. Figure 1b displays the solutions found by maximising the
�

function
using the algorithm of section 3. Clearly the 5 clusters are well represented, however
there are additionally two other ’singular’ components that fit two and three data points
respectively. This is because, as mentioned in section 2.1., the

�
function does not

penalise the situation when a component fits one or few spurious data points since
the contribution to the total entropy will probably be zero, while the log likelihood
increases. However the singular components can be easily cut down after training (and
then refine the other parameters) since they will have almost zero I F .The second data set is the spiral data from Ueda et al. (1999) consisting of 800 3
dimensional data points (Figure 2a, left). Here the data are uniform and there is not
’right’ number of components. The

�
function applied according to the framework

of section 2 is not peaked at any number of components and appears to increase with
a smaller rate than the log likelihood. On the other hand maximising directly the

�
function by starting from 50 components we found a solution with 14 components as
displayed in Figure 2b. We had no problem with singular components in that case and
the algorithm running time was about 20 seconds in a 360MHz processor.

Finally we generated a synthetic data set of 300 points of intrinsic dimensionality
5 embedded in 30 dimensions. To generate this data set we randomly selected each
element of the factor loading matrix e from the standard Gaussian, while the noise
variances in r were randomly selected from the interval �=md� � . We consider all the
possible dimensions of the factors (from 1 to 30). Figure 3a displays the log likelihood,
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Figure 2: a) From left to right: the spiral data, the log likelihood, the posterior entropy
and the

�
function with respect to the number of components. b) The state of the

algorithm for maximising the
�

function after: initialisation, 3 iterations, 10 iterations
and convergence. Note that the algorithm has almost converged in 10 iterations.
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Figure 3: Factor analysis data with 30 data dimensions and 5 intrinsic dimension. a)
Training using 300 data points. From left to right: the log likelihood, the posterior
entropy and the

�
function with respect to the number of factors. b) the respective

plots considering 100 training points.

posterior entropy and the
�

function with respect to the number of factors. The
�

function is sharply peaked in 5 dimensions. Figure 3b shows the respective results by
considering only 100 training points. Note that the posterior entropy increases almost
linearly once the factors overfit the data.

5 Discussion
In this paper we showed that the

�
function of the EM algorithm can be used for

learning the hidden structure in models with hidden variables. Our key observation
was that the entropy of the hidden variables given the observations can penalise over-
flexible hidden structures. Thus, combining this term with a data misfit term (the log
likelihood) we derived the

�
function. We demonstrated this method in the mixture

models and factor analysis, however we consider it of broader applicability.
The posterior entropy can measure the flexibility of the model by considering how

uncertain the unknown hidden variables are given the known data. A generalisation
would be to consider all the unknown configurations of the model, parameters and hid-
den variables, and measure the complexity as the entropy of all unknown configurations
of the model given the data. This also will directly penalise the parameter space. Our
main future research focus is to generalise the current framework in order to consider
parameter together with hidden variables.
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