Sequentially Fitting Mixtures Models using an
Outlier Component

Michalis K. Titsias and Christopher K. I. Williams*
School of Informatics, University of Edinburgh, Edinburgh EH1 2QL, UK
c.k.i.williams@ed.ac.uk M.Titsias@sms.ed.ac.uk

Abstract

We describe a method for training mixture models by learning one
component at a time and thus building the mixture model in a sequential
manner. We do this by incorporating an auxiliary outlier component (a
uniform density to any of the data points) into the mixture model which
allows us to fit just one data cluster by “ignoring” the rest of the clusters.
Once a model is fitted we remove from consideration in a probabilistic
fashion all the data explained by this model and then repeat the operation.
This process can be viewed as fitting a mixture model using a constrained
EM algorithm. The algorithm can be used to provide a sensible initializa-
tion of the mixture components when we train a J-component mixture.
We apply the algorithm to train J-component mixtures of Gaussians and
multivariate multinomials and show results on real data.

1 Introduction

We address the problem of learning a mixture density model with J components
J
P(x) =) m;P;(x/6;) (1)
j=1

where P;(x|0;) is the j'* component having parameters 6; and 7; the mixing
coefficient. Mixture models have been widely used in statistical modelling as
density estimation methods (McLachlan & Peel, 2000). Given a set of i.i.d data
X ={x!,...,x"N} we wish to estimate the underlying density of x by a mixture
model of the form (1). The component densities P;j(x|0;) can be chosen from
some parametric family such as the exponential family. Most of the presentation
in the rest of the paper assumes that P;(x|0;) can be any distribution while in
out experiments we specify this to be a multivariate Gaussian in the case of
continuous data and a multinomial for discrete-valued data.

*http://anc.ed.ac.uk

In this paper we describe a method for training mixture models by learning
one component model at a time and thus building the mixture in a sequential
manner. The key idea in doing this is that we incorporate an auxiliary out-
lier component (a uniform density to any possible data point) into the mixture
model which allows us to fit one cluster of the data by “ignoring” the rest of
the clusters. Data points that are fitted by a model are then “removed from
consideration” in a probabilistic fashion so that at next stage a new model can
fit to a unexplored region of the data space and so on. Intuitively the algorithm
begins by considering all data as outliers and at each stage successively refines
this belief by searching for clusters (structure) in all data that previously was
labelled as outliers. Such a method can be useful for improving parameter ini-
tialization of EM algorithm when it is applied for training mixture models. This
is because at each stage it provides a sensible way to initialize a density model
to data regions that are not well explained by the already fitted models, e.g. for
Gaussian mixtures this can be more effective than simultaneously initializing
the centres by randomly selecting data points.

An additional feature is that the algorithm can indicate when to stop adding
new components; when the outlier component fits no data (or fits only back-
ground clutter data) we have potentially reached the desirable number of com-
ponents and we can stop. We show that this can be used to find the number of
components in some simple clustering problems.

The structure of the remainder of the paper is as follows: In section 2 we de-
scribe the sequential algorithm for fitting a mixture model assuming any form for
the component density P;(x|6;). In section 3 we show some experiments in real
data using Gaussian and multinomial mixtures and provide also a comparison
with the regular EM. For Gaussian mixtures we include also in the comparison
another sequential (greedy) algorithm proposed by Vlassis and Likas (2002) and
Verbeek et al. (2003). We conclude with a discussion in section 4.

2 Sequential algorithm for Mixture Models

In this section we describe the sequential algorithm for learning mixture mod-
els. Particularly, section 2.1 illustrates the idea of using an outlier component to
train a single Gaussian density. Section 2.2 describes the algorithm for sequen-
tially fitting the components of a mixture model using an outlier component,
section 2.3 provides details regarding the application of the algorithm to Gaus-
sian and multinomial mixtures and section 2.4 discusses related work.

2.1 Fitting one density model together with an outlier
component

We wish to learn a density model P(x|6) together with a uniform distribution
U(x), called the outlier component, so that

P(x) = aP(x|0) + (1 — o)U(x). (2)

For clarity assume at the moment that the model P(x|0) is a multivariate Gaus-
sian with parameters 8 = {u, X}. Selecting first a value for a we can learn the
parameters by maximizing the log likelihood L = Egzl log P(x™) using the EM
algorithm.

Notice that if @ = 1 the outlier component is neglected and the parameter
estimate for the Gaussian is the maximum likelihood solution. As a decreases
the Gaussian becomes more and more focused on some population of the data
and as a approaches zero the Gaussian fits very few data points ending up with
fitting just one data point!.

An obvious use of this model is to robustify the Gaussian estimate by choos-
ing a high value for « (say 0.9) which can be useful in situations where one data
cluster is embedded in background clutter. However, what is less obvious is the
fact that by choosing properly the value of a the robust model of equation (2)
can be used for learning just one data cluster by ignoring any other clusters of
the data. To illustrate this consider the data of Figure 1 which form three sep-
arate clusters. We maximize the likelihood by initializing u selecting one data
point and ¥ = ¢l with ¢ equal to the maximum variance of all data dimensions.
« is initialized to 0.5 and is learned infrequently by EM (every 10 iterations).
Figure 1 illustrates two runs of the EM algorithm under two different parameter
initializations of the mean.

If we can fit just one cluster of the data by the model described above we
can then, by repeating the process, fit all the data clusters sequentially. This
motivates the sequential algorithm for fitting mixture models described in next
section.

2.2 Fitting mixture models sequentially

In this section we discuss how we can use an outlier component to fit a mixture
model rather than a single density model. Such a mixture should have the form

J J
P(x) =) mPi(x|6;) + (1= Y m)U(x) (3)
j=1 j=1

where generally ijl m; < 1. We wish to train this mixture model sequentially
by learning only one density model P;(x|6;) at each stage. An intuitive way of
thinking about this is that we start by assuming that the mixing coefficients ;,
J,...,J are set to zero, so that the outlier component has all the probability.
At jth stage the mixing coefficient 7; is set free to get a positive value and
the corresponding component model P;(x|6;) is allowed to fit some part of the
data. At each stage the mixing coefficient of the outlier component always
decreases which implies that the probability of what is considered as outlying
data decreases sequentially.

11f we know the smallest distance between any two training points we can easily work out
a lower bound of « that below of that value the Gaussian fits exactly one data point.

Initial Gaussian Final Gaussian

o N
A
..
Fig
o = N w S
.
L
-
i.

= .
‘ -2 1

-4 -3

-10 -5 0 5 -6 -4 -2 0 2 4
Initial Gaussian Final Gaussian

o N =
>
Do
pe
o - N w N
'
~
]
-
B

. -1
2t det .
.. Ll o -'

-4 -3
-6 -4 -2 0 2 4 -6 -4 -2 0 2 4

Figure 1: Tllustrates fitting a Gaussian using an outlier component. Under
different initializations of the mean (plots on the left) we can discover different
clusters (plots on the right).

Attias (2000) has shown how mixture models can be fitted using variational
Bayesian methods. It is interesting to note that if one component of the mix-
ture at a time is updated repeatedly while keeping the other components fixed
then a scheme quite similar to ours would emerge, as the as-yet-unfitted com-
ponents would tend to have vague distributions not dissimilar to our uniform
component?.

We now describe our algorithm in detail, starting with training the first
component Pj(x|61). By allowing the coefficient 7; to obtain a positive value
we have the mixture

P(x) = m Pi(x/61) + (1 - m)U(x) (4)

which is exactly the model discussed in section 2.1 and thus learning the pa-
rameters {#;, 71} can be done by maximizing the log likelihood using EM.

Suppose now that we have fitted a model P; (x|,) to the data. What we wish
to do next is to train the second mixture component P5(x|f2) by considering
the mixture

P(x) = m Pi(x|01) + ma Py (x|62) + (1 — m1 — m2)U(X). (5)

This case now becomes a little more complicated in the sense that we wish
the second model not to fit data that are already well explained by the first

2We thank Steve Roberts for a helpful discussion on this point.

model. Generally the new model P»(x|62) should fit a subset of the data that is
reasonably different from all the data fitted by P;(x]6;). Such a constraint can
be efficiently taken into account by applying a constrained EM algorithm where
instead of the log likelihood we maximize a lower bound of the log likelihood
(Neal & Hinton, 1998). Particularly, we compute the responsibilities of the
uniform component for each data point x" by
(1 —m)U")
q=—s) (©)
m P (x*61) + (1 —m)U(x")

which are computed by having only trained the first component and then we
express a lower bound of the log likelihood of the model (5). Particularly,
introducing the notation P3'(x) = maPa(x|02) + (1 — m — m2)U(x) and using
Jensen’s inequality we have

Z log {m P1(x[01) + Py'(x)}

n=1
N
m1 Py (x]601) P3(x) }
= log { 1—27 + 27
2 log { (1~ =) P+
N N
> > (1-2)logm Py (x"|61) + Y _ 27 log P3'(x)
n=1 n=1
+ H({z1'}) (7)

where H({z}'}) denotes an entropic term independent of {m3,02}. Since the
parameters of the first model are fixed, maximizing the above bound simplifies
to maximizing only the second term in the above sum under the constrain that
mo should receive a value smaller or equal to 1 —m;. According to the form of the
above objective function maximizing with respect to {62, 72} favours solutions
where the model fits data that previously was explained mainly by the outlier
component. To make this more obvious note that the weights {27} are close to
zero for all data explained by P;(x]6;) and close to one for all data explained
by the outlier component. So the objective function (7) effectively removes
from consideration in a probabilistic fashion data fitted by the first model.
This process of fitting the mixture components to the data can be performed
sequentially. The algorithm is summarised below

1. Set j = 0. Initialize: 2§ =1 for all n.

2. Set j = j + 1. Initialize 6; and 7; = a(1 — 3~ m;), where a < 1 (we use

a =0.5).
3. Optimize the parameters {6;,7;} by running EM and maximizing:
N j—1
D2 log{mP(x"|6;) + (1= Y mi — m)U(x™)} (8)
n=1 i=1

where 7; is sparsely updated by EM (every 10 iterations).

4. Update the log likelihood weights

Y mPi(xn8;) + (1= Y, m)U(x™)

5. Go to step 2 or output the mixture Pj(x) = Egzl m Pi(x]0;) + (1 —
‘z?zl W,)U(X)

At each stage of the above algorithm a new model is trained (step 3) by maxi-
mizing a weighted log likelihood where the weights {2} } mask out (probabilis-
tically) data fitted by the previously learned models. At step 4 the {27} values
are updated so that at the next stage we can fit a new model most probably to
a different data subset. The sequential process can be considered as a kind of
boosting algorithm for density estimation as the data points are reweighted on
each iteration so that points that are well fitted by the current models become
less important in later stages. We further discuss this issue in section 4.

Note that the mixing coefficient of the outlier component 1 — Y7 m; can
only decrease at each stage and naturally the learning process stops once this
coeflicient becomes very close to zero. In section 3 we describe a simple stopping
criterion based on this idea and we use it to find the number of clusters in some
simple clustering problems.

The outcome of the sequential algorithm can be used to initialize a mixture
model. In such case the outlier component is discarded and the coefficients =},
j =1,...,J are normalized to sum to one. The parameters of the resulting
mixture can be refined by applying EM and maximizing the likelihood.

2.2.1 Refinement of the previous learned components

So far the models fitted to the data remain fixed for the later stages, however it
might be more effective if we can refine their parameters during learning. Next
we discuss the refinement procedure we use in our implementation.

The refinement can be introduced as an additional step of the sequential
algorithm between steps 4 and 5 which is applied only for j > 2. After step 4
the values {(1 — z7')} are the responsibilities according to which all the compo-
nents P(x|6;), i =1,...,J explain the data. Based on these responsibilities we
maximize a lower bound of the log likelihood

N J
F = Z(l - z7) logZﬂ'iP(x"wi)
n=1 i=1
N J
+ Y 2flog(l— > m)U(X™) + H({z}})
n=1 =1
N J
= Z(l —2})log » miP(x"|6;) + const (10)
n=1 i=1

where the sum) 7_, 7; is fixed at the value that obtains before we apply the
refinement step. Note that the second term in the first line is a constant since
> i—1 ™ is invariant as well as the entropic term since depends on the {27} val-
ues. Thus the refinement objective function is just the first term in the above
sum under the constraint that) 7_, ; is invariant, which can be carried out
using EM. Such refinement will be within the data regions that the first j com-
ponents already fit. Completely unexplored data regions for which the outlier
component obtains high responsibility will remain unexplored after refinement.

Assuming that we have carried out the refinement step as described above,
we need to feed the changes made back into the sequential algorithm. This is
simply done by updating the weights, so the refinement step is completed by
updating {zJ"} according to the step 4 of the sequential algorithm.

It is interesting to compare the weighted log likelihood used in the refinement
step (eq.(10)) with the corresponding used for learning a new Gaussian (eq.(8)).
The quantity F in eq.(10) explicitly masks out (in a probabilistic way) all the
data fitted by the outlier component. This allows refinement of the Gaussians
without big moves in unexplored data regions. On the other hand the weighted
log likelihood used to learn a new Gaussian works in the opposite way; it masks
out all the data fitted by the already learned Gaussians in order to fit a new
Gaussian to unexplored data regions.

2.2.2 Running time analysis

For mixture models trained by EM algorithm the time complexity depends on
the number of evaluations of the component densities P;(x). The sequential
algorithm without refinement fits one component at each stage which has com-
plexity O(N) per EM iteration. If the maximum number of iterations is M,
the whole process for fitting J models needs O(JN M) operations. This can be
further reduced by noting that at each stage the data fitted by the current mod-
els become much less important since their weights 27 ; will take a very close to
zero value. We can explicitly remove these data from the dataset by expressing
the set A; = {n: 2} ;| > d} with § small (e.g. 6 = 0.05) and use only the data
from A; when we train the j'* component. Thus the j stage needs O(N; M)
time (N; = |A;|) and the total time complexity becomes O(JK M) where K
denotes the average value of all N;s. In practice K can be much smaller than
N. The algorithm with refinement steps at the j** stage learns first one com-
ponent and updates the current mixture (only for j > 2) which totally requires
O(JNM; + 2;122 iNMy) = O(JNM; + J2N M) operations where My is the
maximum number of EM iterations for the refinement procedure. This time can
also be reduced similarly to the no-refinement case.

Note that when we train a J-component mixture the sequential algorithm
is used as the initialization procedure of the mixture model. This means is not
desirable to run all the EM algorithms required by the sequential algorithm till
convergence. Typically we can apply few iterations M; and M for training a
new Gaussian and refining the current mixture, respectively. Especially it is
desirable that M> be small (e.g less than 20) so that the refinement procedure

to be fast. Once the components have been initialized the regular EM is applied
to refine this mixture which needs O(JN) operations per EM iteration.

2.3 Parameter initialization and specifying U(x)

When we apply the sequential algorithm we have to specify several parameters.
First of all the a value used in the step 2 of the algorithm is set equal to 0.5.
Now, when P;(x|6;) is a Gaussian we initialize the mean to some training point
selected from the distribution G(n) = 27/ 25:1 z]”'. G(n) at each stage favours
points that are mainly explained by the outlier component. The covariance
matrix is initialized to be spherical with variance equal to the maximum variance
of all data dimensions.

In the case of multinomial mixtures the component densities have the form

d
Pj(x(0;) = [P(il6}) (11)

i=1

where d is the number of dimensions and P(z;|%) are multinomial distributions.
To initialize 6; we first select a training point x™ from G(n) and initialize the
multinomial parameters for dimension i by giving a fraction «y of the probability
mass to the value that corresponds to the value of z} and split the rest of
probability mass uniformly over the rest of the values.

One crucial point is how we define the uniform distribution U (x). An obvious
way is to find the hypercube/sphere that contains all the training data and
express the uniform density in that space. However in high dimensional spaces
the data often lies on lower dimensional manifolds and such a “bounding box”
uniform distribution will tend to give very low probability densities to the data
points in con}\llparison with the other components. To overcome this we set
U(x) = 4 Y1 P(x"|6a1) where P(x|05;) is a single component model (e.g.
a Gaussian) using maximum likelihood parameters 8)sr,. This can be seen as a
rescaling of the a parameter in equation 2.

2.4 Related work

In addition to the standard EM algorithm, various initialization strategies have
also been proposed. Figueiredo and Jain (2002) and others have demonstrated a
backwards selection method, starting with many components and pruning some
away using a prior that favours sparsity. The forward sequential (greedy) algo-
rithm for Gaussian mixtures proposed by Vlassis and Likas (2002) and Verbeek
et al. (2003) initializes the Gaussians one after the other by comparing at each
stage a set of candidate initializations. Once a Gaussian has been initialized
the current mixture model is refined by maximizing the likelihood using EM.
One important difference with our method is that we use the outlier component
which allows the Gaussians at each stage to fit some part of the data, while in
(Vlassis & Likas, 2002; Verbeek et al., 2003) the Gaussians at each stage fit all

the data. Note also that our method does not use a set of candidate initializa-
tions when we fit a new component and for this reason it requires less running
time.

3 Experiments

In this section we demonstrate the sequential algorithm for training Gaussian
and multinomial mixtures. In section 3.1 we apply the algorithm to learn a
J-component mixture on two real datasets and provide a comparison with the
regular EM as well as the sequential algorithm of Verbeek et al. (2003). In
section 3.2 we apply the sequential algorithm to find the number of components
in a case with well-separated clusters.

3.1 Training a J-component mixture model

We present two experiments in real high dimensional data using Gaussian and
multinomial mixtures respectively. In the first experiment we use the Brodatz
textures images following an experimental setup used in Verbeek et al. (2003).
The task is to cluster a set of 16 x 16 = 256 patches taken from 256 x 256
pixel Brodatz texture images. We consider the number of clusters (textures)
from which patches are extracted to be J = {3,5,7,9}. For a specific J we
randomly choose J textures from the 37 available textures, create a set of 900.J
patches and then keep the half (450J) for training and the rest for testing. We
repeat this experiment 50 times. Each data set was also projected from the
256 to 50 dimensions using PCA in order to speed up the experiment. For
each of the 50 datasets of a certain J we train a mixture model with J compo-
nents using (i) k-means initialized EM® (kmeans), (ii) the sequential (greedy)
algorithm of Verbeek et al. (2003) (VVK)*, (iii) the sequential algorithm with
refinement (Ref) and with (iv) no refinement (NoRef) steps. For the Ref and
NoRef methods the M; and My numbers defined in section 2.2.2 are set to 50
and 20 respectively. Table 1 and 2 display the t-statistic values of the difference
of the average log likelihoods for training and test data set respectively. Note
that when we consider the differences in log likelihoods of the method A and B
(A — B in the notation in the Tables 1 and 2) and the t-statistic is larger than
2.01 the method A is significantly better than B at level 5% (to.025,49 = 2.01).
When the t-statistic is less than —2.01 the method A is significantly worse. Ob-
serve that the sequential fitting algorithm with refinement beats EM initiated
with k-means and that these differences are significant for J = 7, 9. Also the
method with refinements is better than the VVK method and this is significant
for J = 7,9. Note that using refinement always improves the results compared
to the algorithm with no refinement steps. We have also run the algorithm for

3We used the NETLAB implementation available from
http://www.ncrg.aston.ac.uk/netlab.

4The code is provided by the authors at http://carol.science.uva.nl/~vlassis/research/learning/
index_en.html.

Table 1: t-statistic values for the differences of the average training set log like-
lihoods for the Brodatz textures. Bold face indicates that the test is significant
at the 5% level.

3 5 7 9
NOREF - kMEANS -1.03 -0.27 1.7 1.74
REF - KMEANS 0.74 1.74 3.26 3.5
VVK - kMEANS 1.05 -0.26 1.27 0.48
REF - NOREF 2.34 1.24 2.63 3.48
REF - VVK 0.12 1.38 2.49 2.49
NoREF - VVK -1.46 -0.07 0.83 1.04

Table 2: t-statistic values for the differences of the average test set log likelihoods
for the Brodatz textures. Bold face indicates that the test is significant at the
5% level.

3 5 7 9
NOREF - kMEANS -1.02 -0.23 1.66 1.52
REF - KMEANS 0.69 1.75 3.17 3.25
VVK - KMEANS 1.01 -0.24 1.03 0.18
REF - NOREF 2.34 1.3 2.59 3.8
REF - VVK 0.11 1.41 2.57 2.53
NoREF - VVK -1.43 -0.05 0.93 1.09

mixture fitting proposed by Figueiredo and Jain (2002) on this data using their
code (available from http://www.lx.it.pt/ mtf/mixturecode.zip). How-
ever, the pruning strategy they use means that one cannot guarantee to get J
components in the final model, and when fewer than J components are selected
the log likelihoods are low leading to poor performance in comparison to the
methods reported in the Tables.

In our experiments the regular EM with few steps of the k-means algorithm
for initialization was the fastest followed by the sequential algorithm with no-
refinement and the algorithm with refinement, while the method of Verbeek
et al. (2003) was the slowest. For example, choosing J = 7 the real running
time of the algorithms (averaged over 10 runs) was: 25 seconds for the kmeans
method, ii) 30 seconds for the NoRef method, iii) 65 seconds for the Ref method
and iv) 102 seconds for the VVK method, respectively.

The second experiment uses handwritten digits data as employed in Frey
et al. (1996). The digits are quantized to 8 x 8 binary images. Following Meila
and Heckerman (2001) we use only the digit 6 dataset (but note that different
preprocessing means that our results are not directly comparable to theirs). This
dataset consists of 700 training cases and 200 test cases. The implementation of
the regular EM (Reg-EM) is based on initializing the multinomial parameters
by picking J data points randomly and applying the parameter initialization

10

Table 3: Mean average log likelihoods for the test data in the digit6 dataset.

REF NOREF REG-EM
-28.1 £ 0.21 -27.97 £ 0.2 -28.06 £ 0.21
-26.8 £ 0.03 -26.79 £ 0.03 -26.8 £ 0.03
-26.23 +£ 0.09 -26.25 + 0.13 -26.28 + 0.14
-25.93 £ 0.14 -25.90 £0.12 -25.95 £+ 0.14
1 -25.72 £0.11 -25.68 £ 0.09 -25.67 £+ 0.12

= O g Ot W

method described in section 2.2 (v was chosen to be 0.75). The mean average
log likelihoods over 20 random initializations and for different choices of the
number of components J are displayed in Table 3. On this data there is no
significant difference between the performance of the algorithms.

3.2 Finding the number of components

The sequential algorithm can indicate when to stop adding components, since in
case the outlier component fits very few data we probably have reached the re-
quired number of components. We apply this to find the number of components
in cases of separate clusters.

The criterion we use is very simple. Assume that we have trained the jt"
Gaussian, we express the set S; = {x" : 27 > 0.5} which indicates the data
points for which the outlier component obtains the largest responsibility. Now
if S; is a large set, we know that there are some data regions that are not ex-
plored by the Gaussian models, so we have to continue learning. However when
this set contains very few data we can conclude that the Gaussians have discov-
ered all the data regions. In our experiments we require |S;| > d, where d is the
data dimensionality, otherwise we stop learning. For the data of Figure 2 gen-
erated from a five-component mixture we applied the sequential algorithm with
refinement steps. The stopping criterion is met when we reach five components,
when, in fact |S5| = 0.

Note that the above criterion can find the number of components in problems
with well-separated clusters. In cases the data form highly overlapping clusters
or where there is no clear separation of the data into clusters the above criterion
will only roughly indicate how many components needed to represent the data.

4 Discussion

Above we have described our sequential approach for fitting mixture models,
and have demonstrated that for training a J-component mixture model it can
produce better performance than rival algorithms. Compared to the sequential
method of Verbeek et al. (2003) our method gave better performance and it
is also fastest since we do not use a set of candidate initializations when we

11

o N N [«
St
R
o N N [e)}
"
7

N . .o
£, +
“Hy ®
-2 -2
-4 -4
* . Qﬂ

-6 -6 aﬁ
-8 . -8 .
-10 -5 0 5 10 -10 -5 0 5 10

Figure 2: The plot on the left illustrates a data set generated from a 5-
component Gaussian mixture. The plot on the right displays the solution found
by the sequential algorithm once the stopping criterion is met.

fit a new component. Note that our method could probably be significantly
improved by having a small set of candidate initializations.

In terms of model selection, Bayesian methods using the marginal likelihood
as a selection criterion or approximations such as BIC penalties are most com-
mon. While our method is unlikely to be able to compete with sophisticated
Bayesian methods such as reversible jump MCMC (Green, 1995) on densities
whose components are not well separated, it does provide a much more rapid
answer.

The sequential algorithm can be regarded as a boosting density estimation
algorithm. There has been some recent work (Thollard et al., 2002; Rosset &
Segal, 2003) on extending boosting from the supervised learning problem to
the density estimation problem. Our sequential formulation of fitting process is
reminiscent of these boosting algorithms, however one attractive feature of our
scheme is that the boosting view derives from a constrained EM formulation
of the problem which derives the weightings in a particular way. After we had
developed our idea we learned of the work of Neal and Mackay (1998) who have
shown that a sequential fitting approach to the mixture of experts architecture
gave a boosting-like algorithm for supervised learning.

References

Attias, H. (2000). A variational Bayesian framework for graphical models. Ad-
vances in Neural Information Processing Systems 12. MIT Press.

Figueiredo, M. A. T., & Jain, A. K. (2002). Unsupervised learning of finite
mixture models. PAMI, 24(3), 381-396.

Frey, B., Hinton, G., & Dayan, P. (1996). Does the wake-sleep algorithm produce

12

good density estimators. Advances in Neural Information Processing Systems
8. MIT Press.

Green, P. J. (1995). Reversible Jump Markov chain Monte Carlo computation
and Bayesian model determination. Biometrika, 82(4), 7T11-732.

McLachlan, B. G., & Peel, D. (2000). Finite mizture models. Wiley, New York.

Meila, M., & Heckerman, D. (2001). An experimental comparison of model-
based clustering methods. Machine Learning, 42, 9-29.

Neal, R., & Hinton, G. (1998). A view of the EM algorithm that justifies incre-
mental, sparse and other variants. In M. Jordan (Ed.), Learning in Graphical
Models, 355-368. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Neal, R, & Mackay, D. (1998). Likelihood—
based boosting. Unpublished paper available at
http://wuw.inference.phy.cam.ac.uk/mackay/BayesICA.html.

Rosset, S., & Segal, E. (2003). Boosting density estimation. Advances in Neural
Information Processing Systems 15. MIT Press.

Thollard, F., Sebban, M., & Ezequel, P. (2002). Boosting density function
estimators. 18th European Conference on Machine Learning (pp. 431-443).

Verbeek, J., Vlassis, N., & Krose, B. (2003). Efficient greedy learning of Gaus-
sian mixture models. Neural Computation, 15, 469-485.

Vlassis, N., & Likas, A. (2002). A greedy EM for Gaussian mixture learning.
Neural Processing Letters, 15, T7-87.

13

