
Functional Regularisation for Continual
Learning with Gaussian Processes

 Michalis Titsias

What is Continual Learning?

Continual Learning (CL):

● Life-long learning from data and tasks

● Imagine an agent that keeps learning in an online fashion

● Tasks are coming sequentially

● Systems are based on deep neural networks

First task:
Classify instances of digits 0,1
● Binary classification problem

● Input is an image

● Output is binary label {0,1}

 input x from set { , , ...}

What is Continual Learning?
Output label {0,1}

Neural network
that maps input
to output

Second task:
Classify instances of digits 2,3
● Again binary classification

problem

● No further training data from
task 1 (training must continue
without forgetting task 1)

 input x in { , , ...}

What is Continual Learning?
 Output label {0,1}

What is Continual Learning?

 Task 1 Task 2 Task 3
 (no further data from Task 1) (no further data from 1,2)

As we learn new tasks, the NN might forget previous tasks
● Catastrophic forgetting

What is Continual Learning?

Challenges of Continual Learning:

● Avoid catastrophic forgetting

● Scalability over tasks: Don’t restrict the capacity and
allow the network to learn many tasks

● Lean without task boundaries: Detect when data are
coming from a new task

● Transfer learning: Learn faster new tasks

Outline

● Problem Setup

● Continual Learning with Experience Replay

● From Bayesian NNs to Gaussian Processes

● Functional Regularised Continual Learning

● Automatic detection of task changepoints

● Experiments

● Conclusion

Problem Setup
Tasks/data are encountered sequentially

● Input set of data :
● Corresponding outputs/labels :

Learn based on a deep NN: final hidden layer provides the features

This representation is shared across tasks: θ is a shared parameter

To solve specific task i construct an output layer/function

 where vector of task specific weights

Problem Setup

Task 1 Task 2

Each task adds a new head/output to the shared feature vector

We need to keep learning continually the feature parameters θ without
forgetting previous tasks

Continual Learning with Experience Replay

Task 1

Learning the first task is just a standard
ML problem

We have a loss (e.g. negative log-likelihood)

Minimise the loss by applying stochastic gradient descent (SGD) using
mini-batches

Continual Learning with Experience Replay

Data from 2nd task arrive (and will not be getting
data from 1st task anymore!)

We need to add regularisation to not forget 1st
task

We store a small subset of data from the 1st task
to replay them

Regularised loss:

Where the small subset of data for replaying is:

Task 2

Continual Learning with Experience Replay

When learning the k-th task the loss is

Where the regularisation is a sum of replays
from all previous tasks

Experience replay is quite efficient. But still
limited:
● it does not take into account uncertainty
● uncertainty can be really important for

better regularisation

Task k

(Example of why uncertainty matters)
Suppose we learned to
classify 0s from 1s

What the system will do if a new point
arrives from a different distribution ?

New data pointDecision boundary

Continual Learning with Experience Replay

When learning the k-th task the loss is

We would like to improve experience replay methods by adding uncertainty

How? Use Bayesian inference:
● In particular concepts from Gaussian processes (GPs)
● (we will cover first some basics about Bayesian NNs and GPs and then return

to continual learning)

Task k

From Bayesian NNs to Gaussian Processes

To introduce uncertainty we apply Bayesian
inference over task-specific weights

Gaussian prior over :

Where for the task i the weights are different draws from the same prior

Task i

From Bayesian NNs to Gaussian Processes

Bayesian learning and prediction

Observe data :

Train the feature parameters θ by maximising
the marginal likelihood

Compute posterior over the weights:

Then do prediction on test points:

Task i

From Bayesian NNs to Gaussian Processes

Since the weights are Gaussian, the above
is just linear combination of Gaussian variables

So the direct output function values are also Gaussian
Their mean and covariance is

This means that the full function (consisting of all infinite many points) is a
Gaussian process:

From Bayesian NNs to Gaussian Processes

The Gaussian process or function space representation leads to
non-parametric inference

We have as many parameters as training data

Prior
(a big Gaussian of the size of the training set!)

Posterior distribution :

From Bayesian NNs to Gaussian Processes

Function and weight space inference are equivalent from theoretical
point of view (computationally can be very different though!)

E.g. the marginal likelihood is the same

The second integral is simply obtained by reparametrising (i.e.changing
variables) in the first one, so that the new variables are

From Bayesian NNs to Gaussian Processes

However, the function view has some advantages for continual
learning

● Learning a task corresponds to learning the shape of a function

● Thus, to avoid forgetting the task we could remember the values
of that function in some informative input locations (that best
describe the shape)

● Even better we could remember a posterior belief/distribution on
those function values

From Bayesian NNs to Gaussian Processes
Remembering a function at informative locations in binary
classification example

 Input location

Posterior belief

Functional Regularisation for Continual Learning

Algorithm (makes experience replay methods more Bayesian):

1. Learn each task using Bayesian inference

2. From the functional view obtain uncertainties/posterior distribution
over function values on the training data

3. Select informative function input locations and store them for
replay

4. Regularise continual learning by replaying full posterior
distributions on the selected inputs (and not input-label pairs)

Functional Regularisation for Continual Learning

Learning the first task (and updating parameters θ) requires
maximising the log marginal likelihood

But, this is intractable and instead we maximise the evidence lower
bound (ELBO)

Functional Regularisation for Continual Learning

Where we maximize this over θ and the parameters of
Gaussian variational distribution

Given this posterior over weights we can express
the posterior for any set of function values

Functional Regularisation for Continual Learning

We also have to select the input locations.
We use

● either random selection
● or specialised criteria from the Gaussian

process literature

Then we store the (small) set of selected inputs and the posterior

● And use them to avoid forgetting the task/function that we learned

Functional Regularisation for Continual Learning

Finally when we learn the k-th task we have an objective of the form

Where each is the Kullback Leibler
divergence of the GP prior that depends on θ to remain consistent
with the fixed posterior belief of the i-th previous task

Compare the above with the non-Bayesian experience replay loss

Automatic detection of task changepoints

An interesting property of Bayesian
posterior over function values (i.e. the
functional or GP view) is that you obtain
reduced uncertainty close to the training
data

But far away from the training data your
uncertainty Is high and close to the prior
uncertainty

Automatic detection of task changepoints
What the system will do if a new point
arrives from a different distribution ?

New data point

A good Bayesian model should know
that is best to not classify the new data
point at all!

● Too much uncertainty there..

Automatic detection of task changepoints

The increased uncertainty is useful to detect out-of-distribution data, such
as when suddenly there is a changepoint and the new data are coming
from a new task/distribution

Experiments

The most challenging experiment we
consider is the omniglot dataset

Learn sequentially to classify 50 different
alphabets (Latin, Greek, etc)

There are 50 tasks

Each task/alphabet is a multi-class
classification problem where inputs are
images

We use a convnet to construct the shared
feature vector

Experiments

Conclusion
A new algorithm for continual learning that combines Bayesian
inference and experience replay

It uses concepts from Gaussian processes and function space
inference and regularisation

Future work: Apply the method to reinforcement learning

Further details can be found in:
M. K. Titsias, J. Schwarz, A. G. de G. Matthews, R. Pascanu and Y.
W.Teh. Functional Regularisation for Continual Learning with
Gaussian Processes. International Conference on Learning
Representations,2020, to appear

