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What is Continual Learning?

Continual Learning (CL):

● Life-long learning from data and tasks

● Imagine an agent that keeps learning in an online fashion

● Tasks are coming sequentially
 

● Systems  are based  on deep neural networks            
     



First task: 
Classify instances of digits 0,1
● Binary classification problem

● Input is an image 

● Output is binary label {0,1}

                                                 input x from set  {    ,   , ...}

                                                

What is Continual Learning?
Output label {0,1}

Neural network 
that maps input 
to output 



Second task: 
Classify instances of digits 2,3
● Again binary classification 

problem

● No further training  data from 
task 1 (training must continue 
without forgetting task 1)  

                                                             input x  in {    ,   , ...}

                                                

What is Continual Learning?
        Output label {0,1}



What is Continual Learning?

    Task 1                                      Task 2                                        Task 3
                                  (no further data from Task 1)      (no further data from 1,2)                      

As we learn new tasks, the NN might forget previous tasks
● Catastrophic forgetting    



What is Continual Learning?

Challenges of Continual Learning: 

● Avoid catastrophic forgetting 

● Scalability over tasks:  Don’t restrict the capacity and 
allow the network to learn many tasks

● Lean without task boundaries: Detect when data are 
coming from a new task
 

● Transfer learning: Learn faster new tasks     
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Problem Setup
Tasks/data are encountered sequentially 

● Input set of data : 
● Corresponding outputs/labels :

Learn based on a deep NN: final hidden layer provides the features

This representation is shared across tasks: θ is a shared parameter

To solve specific task i construct an output layer/function 

  where         vector of task specific weights      



Problem Setup

Task 1 Task 2

Each task adds a new head/output to the shared feature vector

We need to keep learning continually the feature parameters θ without 
forgetting previous tasks



Continual Learning with Experience Replay

Task 1

Learning the first task is just a standard 
ML problem 

We have a loss (e.g. negative log-likelihood)

Minimise the loss by applying stochastic gradient descent (SGD) using 
mini-batches    



Continual Learning with Experience Replay

Data from  2nd task arrive (and will not be getting 
data from 1st task anymore!) 

We need to add regularisation to not forget 1st 
task 

We store a small subset of data from the 1st task  
to replay them 

Regularised loss:

Where the small subset of data for replaying is:     

Task 2



Continual Learning with Experience Replay

When learning the k-th task the loss is

Where the regularisation is a sum of replays 
from all previous tasks  

Experience replay is quite efficient. But still 
limited: 
● it does not take into account uncertainty 
● uncertainty can be really important for 

better regularisation 

 

Task k



(Example of why uncertainty matters) 
Suppose we learned to 
classify 0s from 1s 

What the system will do if a new point 
arrives from a different distribution ? 

New data pointDecision boundary



Continual Learning with Experience Replay

When learning the k-th task the loss is

We would like to improve experience replay methods by adding uncertainty 

How? Use Bayesian inference: 
● In particular concepts from Gaussian processes (GPs)
● (we will cover first some basics about Bayesian NNs and GPs and then return 

to continual learning)     

 

Task k



From Bayesian NNs to Gaussian Processes

To introduce uncertainty we apply Bayesian 
inference over task-specific weights

Gaussian prior over       :

Where for the task i  the weights are different draws from the same prior

 
 

Task i



From Bayesian NNs to Gaussian Processes

Bayesian learning and prediction

Observe data : 

Train the feature parameters θ by maximising 
the marginal  likelihood

Compute posterior over the weights: 

Then do prediction on test points:  

Task i



From Bayesian NNs to Gaussian Processes

Since the weights are Gaussian, the above 
is just linear combination of Gaussian variables 

So the direct output function values           are also Gaussian 
Their mean and covariance is 

This means that the full function (consisting of all infinite many points) is a 
Gaussian process:   



From Bayesian NNs to Gaussian Processes

The Gaussian process or function space representation leads to  
non-parametric inference 

We have as many parameters as training data 

Prior 
(a big Gaussian of the size of the training set!)

Posterior distribution :     

    



From Bayesian NNs to Gaussian Processes

Function and weight space inference are equivalent from theoretical 
point of view  (computationally can be very different though!)

E.g. the marginal likelihood is the same  

The second integral is simply obtained by reparametrising (i.e.changing 
variables) in the first one, so that the new variables are

   

  

    



From Bayesian NNs to Gaussian Processes

However, the function view has some advantages for continual 
learning

● Learning a task corresponds to learning the shape of a function

● Thus, to avoid forgetting the task we could remember the values 
of that function in some informative input locations (that best 
describe the shape)

● Even better we could remember a posterior belief/distribution on  
those function values     



From Bayesian NNs to Gaussian Processes
Remembering a function at informative locations in binary 
classification example  

                     Input location

Posterior belief 



Functional Regularisation for Continual Learning

Algorithm (makes experience replay methods more Bayesian): 

1. Learn each task using Bayesian inference

2. From the functional view obtain uncertainties/posterior distribution 
over function values on the training data 

3. Select  informative function input locations and store them for 
replay

4. Regularise continual learning by replaying full posterior 
distributions on the selected inputs (and not input-label pairs) 



Functional Regularisation for Continual Learning

Learning the first task (and updating parameters θ)  requires 
maximising the log marginal likelihood 

But, this is intractable and instead we maximise the evidence lower 
bound (ELBO) 



Functional Regularisation for Continual Learning

Where we maximize this over θ and the parameters of 
Gaussian variational distribution

Given this posterior over weights we can express 
the posterior for any set of function values   
 



Functional Regularisation for Continual Learning

We also have to select the input locations. 
We use  

● either random selection 
● or specialised criteria from the Gaussian 

process literature

Then we store the (small) set of selected inputs and the posterior

● And use them to avoid forgetting the task/function that we learned     



Functional Regularisation for Continual Learning

Finally when we learn the k-th task we have an objective of the form 

Where each                                         is the Kullback Leibler 
divergence of the GP prior that depends on θ  to remain consistent 
with the fixed posterior belief of the i-th previous task 

Compare the above with the non-Bayesian experience replay loss  



Automatic detection of task changepoints

An interesting property of Bayesian  
posterior over function values (i.e. the 
functional or GP view) is that you obtain 
reduced uncertainty close to the training 
data   

But far away from the training data your 
uncertainty Is high and close to the prior 
uncertainty 



Automatic detection of task changepoints 
What the system will do if a new point 
arrives from a different distribution ? 

New data point

A good Bayesian model should know
that is best to not classify the new data 
point at all! 

● Too much uncertainty there..  



Automatic detection of task changepoints

The increased uncertainty is useful to detect out-of-distribution data, such 
as when suddenly there is a changepoint and the new data are coming 
from a new task/distribution 



Experiments

The most challenging experiment we 
consider is the omniglot dataset 

Learn sequentially to classify 50 different 
alphabets (Latin, Greek, etc)

There are 50 tasks

Each task/alphabet is a multi-class 
classification problem where inputs are 
images

We use a convnet to construct the shared 
feature vector     



Experiments



Conclusion
A new algorithm for continual learning that combines Bayesian 
inference and experience replay 

It uses concepts from Gaussian processes and function space 
inference and regularisation 

Future work:  Apply the method to reinforcement learning

Further details can be found in:
M. K. Titsias, J. Schwarz, A. G. de G. Matthews, R. Pascanu and Y. 
W.Teh. Functional Regularisation for  Continual Learning with 
Gaussian Processes. International Conference on Learning 
Representations,2020, to appear
   

 


