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Abstract

Sparse Gaussian process methods that use inducing variables require the selection of the inducing

inputs and the kernel hyperparameters. We introduce a variational formulation for sparse approxima-

tions that jointly infers the inducing inputs and the kernel hyperparameters by maximizing a lower

bound of the true log marginal likelihood. The key property of this formulation is that the inducing

inputs are defined to be variational parameters which are selected by minimizing the Kullback-Leibler

divergence between the variational distribution and the exact posterior distribution over the latent

function values. We apply this technique to regression and we compare it with other approaches in

the literature.

1 Introduction

Gaussian processes (GPs) are stochastic processes that, in the context of Bayesian statistics, can be used

as non-parametric priors over real-valued functions that can be combined with data to give posterior

processes over these functions (O’Hagan, 1978; Wahba, 1990). In machine learning GPs offer a Bayesian

kernel-based framework for solving supervised learning tasks such as regression and classification; see e.g.

(Rasmussen and Williams, 2006).

However, the application of GP models is intractable for large datasets because the time complexity

scales as O(n3) and the storage as O(n2) where n is the number of training examples. To overcome

this limitation, many approximate or sparse methods have been proposed in the literature (Williams and

Seeger, 2001; Smola and Bartlett, 2001; Csato and Opper, 2002; Lawrence et al., 2002; Seeger et al.,

2003; Schwaighofer and Tresp, 2003; Keerthi and Chu, 2006; Snelson and Ghahramani, 2006; Quiñonero-

Candela and Rasmussen, 2005; Walder et al., 2008). These methods construct an approximation based

on a small set of m support or inducing variables that allow the reduction of the time complexity from

O(n3) to O(nm2). They mainly differ in the strategies they use to select the inducing inputs which are

typically selected from the training or test examples. Snelson and Ghahramani (2006) allow the inducing

variables to be considered as auxiliary pseudo-inputs that are inferred along with kernel hyperparameters

using continuous optimization.

The selection of inducing variables and kernel hyperparameters in a sparse GP method can be ap-

proached as a model selection problem. Therefore, the most relevant criterion for solving such problem

is an approximation to the exact (intractable) marginal likelihood that can be maximized over inducing
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inputs and hyperparameters. Existing state-of-the-art methods (Snelson and Ghahramani, 2006; Seeger

et al., 2003) derive such approximations by modifying the likelihood function or the GP prior (Quiñonero-

Candela and Rasmussen, 2005) and then computing the marginal likelihood of the modified model. This

approach turns the inducing inputs into additional kernel hyperparameters. While this can increase flex-

ibility when we fit the data, it can also lead to overfitting when we optimize with respect to all unknown

hyperparameters. Furthermore, fitting a modified model to the data is not so rigorous approximation

procedure since there is no distance or divergence between the exact and the modified model that is

minimized.

In this paper we introduce a variational method for sparse GP models that jointly selects the inducing

inputs and the hyperparameters by maximizing a lower bound to the exact marginal likelihood. In this

formulation we do not modify the likelihood or the GP prior in the training examples. Instead we follow

the standard variational approach (Jordan et al., 1999) according to which a variational distribution is

used to approximate the exact posterior over the latent function values. The important difference between

this formulation and previous methods is that here the inducing inputs are defined to be variational

parameters which are selected by minimizing the Kullback-Leibler (KL) divergence. This allows i) to

avoid overfitting and ii) to rigorously approximate the exact GP model by minimizing a divergence

between the sparse model and the exact one. The selection of the inducing inputs and hyperparameters

is achieved either by assuming pseudo-inputs and applying continuous optimization over all unknown

quantities, similarly to (Snelson and Ghahramani, 2006), or by using a variational EM algorithm where

at the E step we greedily select the inducing inputs from the training data and at the M step we update

the hyperparameters. In contrast to previous greedy approaches, e.g. (Seeger et al., 2003), our scheme

monotonically increases the optimized objective function.

We apply the variational method to regression with additive Gaussian noise and we compare its

performance to training schemes based on the projected process marginal likelihood (Seeger et al., 2003;

Csato and Opper, 2002) and the sparse pseudo-inputs marginal likelihood (Snelson and Ghahramani,

2006).

Our method is most closely related to the variational sparse GP method described in (Csato, 2002;

Csato and Opper, 2002; Seeger, 2003) that is applied to GP classification (Seeger, 2003). The main

difference between our formulation and these techniques is that we maximize a variational lower bound

in order to select the inducing inputs, while these methods use variational bounds for estimating only

the kernel hyperparameters. This paper is a revised and extended version of (Titsias, 2009).

2 Gaussian process regression and sparse methods

A GP is a collection of random variables {f(x)|x ∈ X}, where X is an index or input set, for which any

finite subset follows a Gaussian distribution. A GP is fully specified by the mean function m(x) and the

covariance or kernel function k(x,x′) defined by

m(x) = E[f(x)], (1)

k(x,x′) = E[(f(x) − m(x))(f(x′) − m(x′))]. (2)

In the context of regression and statistical learning, a GP can be used as a non-parametric prior over a

real-valued function which can be combined with data to give a posterior over the function. Suppose that
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we wish to estimate a real-valued function f(x), where for simplicity the input set X is taken to be the

D-dimensional real space RD. We shall call f(x) the unobserved or latent function. We further assume

that the mean function of the GP prior is zero and the covariance function is specified through a set of

hyperparameters θ. Suppose we collect a training dataset, {(xi, yi)}
n
i=1, consisting of n noisy realizations

of the latent function where each scalar yi is obtained by adding Gaussian noise to f(x) at input xi, i.e.

yi = fi + ǫi, ǫi ∼ N(0, σ2), fi = f(xi).

We denote by X the n × D matrix of all training inputs, y = [y1 . . . yn]T the vector of all outputs and

f = [f1 . . . fn]T the corresponding vector of the training latent function values. The marginalization

property of GPs allows us to simplify the (initially infinite dimensional) prior so that after marginalizing

out all function points not associated with the data, we obtain a n-dimensional Gaussian distribution,

p(f) = N(f |0,Knn), where 0 denotes the n-dimensional zero vector and Knn is the n × n covariance

matrix obtained by evaluating the kernel function on the observed inputs. The joint probability model

of observed output and latent variables data can be written as

p(y, f) = p(y|f)p(f),

where p(y|f) is the likelihood function and p(f) the GP prior. Notice that this is a conditional model

since we condition on the observed inputs X. Nevertheless, for the sake of clarity we omit reference to

X and the hyperparameters1 throughout the paper. The training dataset induce a posterior process over

the latent function f(x) which (because of the Gaussian likelihood) is also a GP specified by a posterior

mean function and a posterior covariance function. We can easily work out the functional form of these

functions, e.g. by augmenting the marginal probability p(y) of the observed outputs by two latent function

values f(x) and f(x′), and find that

my(x) = Kxn(σ2I + Knn)−1y, (3)

ky(x,x′) = k(x,x′) − Kxn(σ2I + Knn)−1Knx′ .

Here, Kxn = [k(x,x1) . . . k(x,xn)] is an n-dimensional row vector of kernel function values between x and

the training inputs and Knx = KT
xn. Any query related to the posterior GP can be answered by the above

mean and covariance functions. For instance, the Gaussian posterior distribution p(f |y) on the training

latent variables f is computed by evaluating eq. (3) at the inputs X. Similarly the prediction of the output

y∗ = f∗ + ǫ∗ at some unseen input x∗ is described by p(y∗|y) = N(y∗|my(x∗), ky(x∗,x∗) + σ2). The

posterior GP depends on the values of the hyperparameters (θ, σ2) which can be estimated by maximizing

the log marginal likelihood given by

log p(y) = log[N(y|0, σ2I + Knn)]. (4)

Once we have obtained point estimates for the hyperparameters (σ2,θ) by maximizing the above log

marginal likelihood, we can use these estimates in eq. (3) in order to make prediction in unseen input

points.

Although the above GP framework is elegant, it requires O(n3) computations as clearly we need to

1A precise notation is to write p(y, f |X, σ2, θ) = p(y|f , σ2)p(f |X, θ).
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invert a matrix of size n × n; once when we evaluate the prediction in eq. (3) and multiple times when

we maximize the marginal likelihood in eq. (4). Therefore, we need to consider approximate or sparse

methods in order to deal with large datasets. Advanced sparse methods use a small set of m function

points as support or inducing variables. This yields a time complexity that scales as O(nm2). Some

important issues in these methods involve the selection of the inducing variables and the hyperparameters.

For reviews of current approaches see chapter 8 in (Rasmussen and Williams, 2006) and (Quiñonero-

Candela and Rasmussen, 2005). In section 3, we propose a variational framework to deal with the

selection of the inducing variables and hyperparameters. Therefore, in the remaining of this section we

analyze the most relevant previous methods which are based on maximizing an approximate marginal

likelihood obtained by modifying the GP prior (Quiñonero-Candela and Rasmussen, 2005).

Suppose we wish to use m inducing variables to construct our sparse GP method. The inducing vari-

ables are latent function values evaluated at some inputs Xm. Xm can be a subset of the training inputs or

auxiliary pseudo-points (Snelson and Ghahramani, 2006). Learning Xm and the hyperparameters (θ, σ2)

is the crucial problem we need to solve in order to obtain a sparse GP method. An approximation to the

true log marginal likelihood in eq. (4) can allow us to infer these quantities. The current state-of-the-art

approximate marginal likelihood is given in the sparse pseudo-inputs GP method (SPGP) proposed in

(Snelson and Ghahramani, 2006). A related objective function used in (Seeger et al., 2003) corresponds

to the projected process approximation (PP). These approximate log marginal likelihoods have the form

F = log[N(y|0, σ2I + Qnn)], (5)

where Qnn is an approximation to the true covariance Knn. In PP, Qnn = KnmK−1
mmKmn, i.e. the exact

covariance is replaced by the Nyström approximation. Here, Kmm is the m × m covariance matrix on

the inducing inputs, Knm is the n × m cross-covariance matrix between training and inducing points

and Kmn = KT
nm. In SPGP, Qnn = diag[Knn − KnmK−1

mmKmn] + KnmK−1
mmKmn, i.e. the Nyström

approximation is corrected to be exact in the diagonal. By contrasting eq. (4) with (5), it is clear that F

is obtained by modifying the GP prior. This implies that the inducing inputs Xm play the role of extra

kernel hyperparameters (similar to θ) that parametrize the covariance matrix Qnn. However, because the

prior has changed, continuous optimization of F with respect to Xm does not reliably approximate the

exact GP model because there is no any distance between the modified and the exact GP model that is

minimized. Further, since F is heavily parametrized with the extra hyperparameters Xm, overfitting can

occur especially when we jointly optimize over (Xm,θ, σ2). Despite all that, the flexibility introduced by

the extra hyperparameters Xm can often be advantageous. For instance, unlike the exact GP model, the

SPGP model can fit heteroscedastic noise in the output data (Snelson and Ghahramani, 2006).

In the next section, we propose a formulation for sparse GP regression that follows a different philos-

ophy to what eq. (5) implies. Rather than modifying the exact GP model and maximizing the marginal

likelihood of the modified model, we minimize the KL divergence between the exact posterior GP and

a variational approximation. The inducing inputs Xm become now variational parameters which are

selected so as the KL divergence is minimized.

3 Variational learning of inducing inputs

We wish to define a sparse method that directly approximates the mean and covariance functions in

eq. (3) that characterize the posterior GP. This posterior GP can be also described by the predictive
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Gaussian distribution

p(z|y) =

∫

p(z|f)p(f |y)df ,

where z is any finite set of function points, p(z|f) denotes the conditional GP prior and p(f |y) is the

posterior distribution over the training latent function values. Suppose that we wish to approximate the

above Bayesian integral by using a small set of m auxiliary inducing variables fm evaluated at the pseudo-

inputs Xm, which are independent from the training inputs. We further assume that fm are function

values drawn from the same GP prior2 as the training function values f . By using the augmented joint

model p(y|f)p(z, f , fm), where p(z, fm, f) is the GP prior jointly expressed over the function values z, f

and fm, we can equivalently write p(z|y) as

p(z|y) =

∫

p(z|fm, f)p(f |fm,y)p(fm|y)dfdfm. (6)

This expanded way of writing the predictive distribution is rather instructive since it indicates what one

should expect from a good set of inducing variables and in fact it reveals the properties of an optimal

set. More precisely, suppose that fm is a sufficient statistic for the parameter f in the sense that z and f

are independent given fm, i.e. it holds p(z|fm, f) = p(z|fm) for any z. The above can be written as

q(z) =

∫

p(z|fm)p(f |fm)φ(fm)dfdfm

=

∫

p(z|fm)φ(fm)dfm =

∫

q(z, fm)dfm, (7)

where q(z) = p(z|y) and φ(fm) = p(fm|y). Here, p(f |fm) = p(f |fm,y) is true since y is a noisy version of

f and because of the assumption we made that any z is conditionally independent from f given fm
3. The

predictive distribution in eq. (7) requires reference to only m function points, the inducing variables fm,

and it can be computed in O(nm2) time; see eq. (8) below. However, in practise the assumption of fm

being a sufficient statistic is unlikely to hold and we should expect q(z) to be only an approximation to

the exact predictive distribution p(z|y). In such case, and in order to think about how to optimize the

quality of the approximation, we can let φ(fm) be a “free” variational Gaussian distribution, where in

general φ(fm) 6= p(fm|y), that depends on a mean vector µ and a covariance matrix A. Notice also that

the quality of the approximation will crucially depend on the locations Xm of the inducing variables. By

using eq. (7), we can read off the mean and covariance functions of the approximate posterior GP and

obtain:

mq
y(x) = KxmK−1

mmµ, (8)

kq
y(x,x′) = k(x,x′) − KxmK−1

mmKmx′ + KxmK−1
mmAK−1

mmKmx′ .

The above defines the general form of the sparse posterior GP which is tractably computed in O(nm2)

time. The question that now arises is how can we select the φ distribution, i.e. (µ, A), and the inducing

inputs Xm. Notice that different sparse GP approaches such as the PP and SPGP methods, also called

DTC and FITC in the unified view of Quiñonero-Candela and Rasmussen (2005), use different forms for

the variational distribution φ and follow different strategies for the selection of the inducing inputs and

hyperparameters.

2More general inducing variables are defined in section 6.
3From p(z|fm,y) =

R

p(y|f)p(z,fm,f)df
R

p(y|f)p(z,fm,f)dfdz
and by using the fact p(z|fm, f) = p(z|fm), the result follows.
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Next we apply a variational inference method that allows to jointly specify the quantities (Xm, φ) and

crucially treat the inducing inputs as variational parameters which are rigorously selected by minimizing

the KL divergence. As will be shown our method regarding the form of the φ distribution leads to

the PP prediction (Csato and Opper, 2002; Seeger, 2003), while it gives a novel way of specifying the

inducing inputs Xm and the hyperparameters (σ2,θ) by maximizing a lower bound to the exact marginal

likelihood.

3.1 The variational lower bound

To select the inducing inputs Xm, we intend to apply variational inference in an augmented probability

space that involves both the training latent function values f and the pseudo-input inducing variables

fm. Particularly, the initial joint model p(y, f) is augmented with the variables fm to form the model

p(y, f , fm) = p(y|f)p(f |fm)p(fm), (9)

where the conditional GP prior is given by p(f |fm) = N(f |KnmK−1
mmfm,Knn−KnmK−1

mmKmn). As a con-

sequence of the marginalization property of the Gaussian process according to which p(f) =
∫

p(f , fm)dfm,

the two models are equivalent in terms of doing exact inference, i.e. computing the posterior p(f |y) and

the marginal likelihood p(y). For instance, the log marginal likelihood in eq. (4) can be equivalently

written as

log p(y) = log

∫

p(y|f)p(f |fm)p(fm)dfdfm. (10)

However, the augmented probability model is more flexible in terms of doing approximate inference since

it contains a set of parameters, that is the inducing inputs Xm, which are somehow arbitrary. More

precisely, these parameters do not affect the exact GP model, p(y, f), because p(f) is not changing by

varying the values of Xm despite the fact that p(f |fm) and p(fm) do change. Therefore, Xm are not model

parameters (as (σ2,θ) are) and by applying approximate inference in the augmented probability model

we can turn them into variational parameters. This is what we do next.

We want to approximate the true posterior distribution p(f , fm|y) = p(f |fm,y)p(fm|y) by introducing

a variational distribution q(f , fm) and minimizing the KL divergence:

KL(q(f , fm)||p(f , fm|y)) =

∫

q(f , fm) log
q(f , fm)

p(f , fm|y)
dfdfm. (11)

This is based on the standard variational approach widely used in machine learning (Jordan et al., 1999).

To specify the form of the variational distribution q(f , fm), we follow the arguments exposed earlier in

section 3. Particularly, for an optimal setting of the inducing variables, the exact posterior p(f , fm|y)

factorizes as p(f , fm|y) = p(f |fm)p(fm|y). This tells us that the variational distribution must satisfy the

same factorization as well, in order for the minimization of the KL divergence to search for these optimal

inducing variables. Thus,

q(f , fm) = p(f |fm)φ(fm), (12)

where φ(fm) is an unconstrained variational distribution over fm and p(f |fm) is the conditional GP prior.

Notice also that the form of this distribution directly follows from eq. (7). To determine the variational

quantities (Xm, φ), we minimize the KL divergence in eq. (11), which is equivalently expressed as the
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maximization of the following variational lower bound on the true log marginal likelihood:

log p(y) ≥ FV (Xm, φ) =

∫

p(f |fm)φ(fm) log
p(y|f)p(f |fm)p(fm)

p(f |fm)φ(fm)
dfdfm,

=

∫

φ(fm)

{
∫

p(f |fm) log p(y|f)df + log
p(fm)

φ(fm)

}

dfm, (13)

where the term p(f |fm), in the first line inside the log, cancels out4. We can firstly maximize the bound

by analytically solving for the optimal choice of the variational distribution φ. To do this, we firstly

compute the integral

log G(fm,y) =

∫

p(f |fm) log p(y|f)df

= log
[

N(y|α, σ2I)
]

−
1

2σ2
Tr(Knn − Qnn). (14)

Here, α = E[f |fm] = KnmK−1
mmfm and Qnn = KnmK−1

mmKmn. Notice that α and Knn − Qnn are the

mean vector and covariance matrix, respectively, of the conditional GP prior p(f |fm). Eq. (13) is written

as

FV (Xm, φ) =

∫

φ(fm) log
G(fm,y)p(fm)

φ(fm)
dfm. (15)

We can now maximize the bound with respect to the distribution φ, without computing the optimal

distribution, called φ∗, itself. This is done by reversing the Jensen’s inequality, i.e. moving the log

outside of the integral, which gives

FV (Xm) = log
[

N(y|0, σ2I + Qnn)
]

−
1

2σ2
Tr(Knn − Qnn), (16)

where Qnn = KnmK−1
mmKmn. More details of the derivation of this bound are given in the appendix A.

The novelty of the above objective function is that it contains a regularization trace term: − 1
2σ2 Tr(Knn−

Qnn). This clearly differentiates FV from all marginal likelihoods, described by eq. (5), that were previ-

ously applied to sparse GP regression. We will analyze the trace term shortly.

The quantity in eq. (16) is computed in O(nm2) time and is a lower bound of the true log marginal

likelihood for any value of the inducing inputs Xm. Further maximization of the bound can be achieved

by optimizing over Xm and optionally over the number of these variables. Notice that the inducing

inputs determine the flexibility of the variational distribution q(f , fm) = p(f |fm)φ∗(fm) since by tuning

Xm we adapt both p(f |fm) and the underlying optimal distribution φ∗. To compute this optimal φ∗, we

differentiate eq. (15) with respect to φ(fm) without imposing any constraints on the functional form of

φ(fm) apart from being a distribution. This gives (see appendix A):

φ∗(fm) = N(fm|µ, A), (17)

where µ = σ−2KmmΣKmny, A = KmmΣKmm and Σ = (Kmm + σ−2KmnKnm)−1. This now fully

specifies our variational GP and we can substitute (µ, A) in eq. (8) in order to make predictions in

unseen input points. Clearly, the predictive distribution is exactly the one used by the projected process

4This cancellation is actually not needed as we can arrive faster at eq. (13) by writing log p(y) ≥
R

φ(fm) log
p(fm)

R

p(y|f)p(f |fm)df

φ(fm)
dfm and then apply once again Jensen’s inequality to lower bound the term

log
R

p(y|f)p(f |fm)df with respect to p(f |fm).
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approximation (PP) that has been previously proposed in (Csato and Opper, 2002; Seeger et al., 2003).

Thus, as far as the predictive distribution is concerned the above method is equivalent to PP.

However, the variational method is very different to PP and SPGP as far as the selection of the

inducing inputs and the kernel hyperparameters is concerned. This is because of the extra regularization

term that appears in the bound in eq. (16) and does not appear in the approximate log marginal likelihoods

used in PP (Seeger et al., 2003) and SPGP (Snelson and Ghahramani, 2006). As discussed in section 2,

for the latter objective functions, the role of Xm is to form a set of extra kernel hyperparameters. In

contrast, for the lower bound, the inputs Xm become variational parameters due to the KL divergence

that is minimized.

To look into the functional form of the bound, note that FV is the sum of the PP log likelihood and the

regularization trace term − 1
2σ−2Tr(Knn − Qnn). Thus, FV attempts to maximize the PP log likelihood

and simultaneously minimize the trace Tr(Knn − Qnn). This trace represents the total variance of the

conditional prior p(f |fm) which also corresponds to the squared error of predicting the training latent

values f from the inducing variables fm:
∫

p(f , fm)||KnmK−1
mmfm − f ||2dfdfm. When the trace term is

zero, the Nyström approximation is exact, i.e. Knn = KnmK−1
mmKmn, which means that the variational

distribution q(f , fm) matches exactly the true posterior distribution. Note that the trace Tr(Knn −Qnn)

itself has been used as a criterion for selecting the inducing points from the training data in (Smola and

Schölkopf, 2000) and is similar to the criterion used in (Lawrence et al., 2002).

When we maximize the variational lower bound, the hyperparameters (σ2,θ) are regularized. It is

easy to see how this is achieved for the noise variance σ2. At a local maxima, σ2 satisfies:

σ2 =
1

n

∫

φ∗(fm)||y − α||2dfm +
1

n
Tr(Knn − Qnn), (18)

where ||z|| denotes the Euclidean norm and α = E[f |fm] = KnmK−1
mmfm. This decomposition reveals

that the obtained σ2 will be equal to the estimated “actual” noise plus a “correction” term that is the

average squared error associated with the prediction of the training latent values f from the inducing

variables fm. Thus, the variational lower bound naturally prefers to set σ2 larger than the “actual” noise

in a way that is proportional to the inaccuracy of the approximation.

So far we assumed that the inducing variables correspond to pseudo-inputs which are are selected by

applying gradient-based optimization. However, this can be difficult in high dimensional input spaces

as the number of variables that need to be optimized becomes very large. Further, the kernel function

might not be differentiable with respect to the inputs. see e.g. kernels defined in strings. In such cases

we can still apply the variational method by selecting the inducing inputs from the training inputs. An

important property of this discrete optimization scheme is that the variational lower bound monotonically

increases when we greedily select inducing inputs and adapt the hyperparameters. Next we discuss this

greedy selection method.

3.2 Greedy selection from the training inputs

Let m ⊂ {1, . . . , n} be the indices of a subset of data that are used as the inducing variables. The training

points that are not part of the inducing set are indexed by n−m and are called the remaining points, e.g.

fn−m denotes the remaining latent function values. The variational method is applied similarly to the

pseudo-inputs case. Assuming the variational distribution q(f) = p(fn−m|fm)φ(fm), we can express a vari-

ational bound that has the same form as the bound in eq. (16) with the only difference that the covariance
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matrix in the trace term is now given by Cov(fn−m|fm) = K(n−m)(n−m) − K(n−m)mK−1
mmKm(n−m).

The selection of inducing variables among the training data requires a prohibitive combinatorial

search. A suboptimal solution can be based on a greedy selection scheme where we start with an empty

inducing set m = ∅ and a remaining set n − m = {1, . . . , n}. At each iteration, we add a training point

j ∈ J ⊂ n − m, where J is a randomly chosen working set, into the inducing set that maximizes the

selection criterion ∆j .

It is important to interleave the greedy selection process with the adaption of the hyperparameters

(σ2,θ). This can be viewed as an EM-like algorithm; at the E step we add one point into the inducing

set and at the M step we update the hyperparameters. To obtain a reliable convergence, the approximate

marginal likelihood must monotonically increase at each E or M step. The PP and SPGP log likelihoods

do not satisfy such a requirement because they can also decrease as we add points into the inducing set.

In contrast, the bound FV is guaranteed to monotonically increase since now the EM-like algorithm is a

variational EM. To clarify this, we state the following proposition.

Proposition 1. Let (Xm, fm) be the current set of inducing points and m the corresponding set of

indices. Any point i ∈ n − m added into the inducing set can never decrease the lower bound.

Proof: Before the new point (fi,xi) is added, the variational distribution is p(fn−m|fm)φ∗(fm) =

p(fn−(m∪i)|fi, fm)p(fi|fm)φ∗(fm). When we add the new point, the term p(fi|fm)φ∗(fm) is replaced by

the optimal φ∗(fi, fm) distribution. This can either increase the lower bound or leave it invariant. A

more detailed proof is given in the appendix B.

A consequence of the above proposition is that the greedy selection process monotonically increases

the lower bound and this holds for any possible criterion ∆. An obvious choice is to use FV as the

criterion, which can be evaluated in O(nm) time for any candidate point in the working set J . Such a

selection process maximizes the decrease in the divergence KL(q(f)||p(f |y)).

Finally, we should point out that the selection of the inducing variables from the training data should

not necessarily be performed based on the greedy selection strategy discussed above. One could consider

different strategies such as adding groups of training points simultaneously into the active set or swapping

points between the active and the remaining sets. Any strategy for reselecting the active set simply

updates the variational distribution q(f), and as long as this is done so that the bound increases, the

whole procedure leads to a valid variational EM algorithm.

4 Comparison of the objective functions

In this section we compare the lower bound FV , the PP and the SPGP log likelihood in some toy problems.

All these functions are continuous with respect to (Xm, σ2,θ) and can be maximized using gradient-based

optimization.

Our working example will be the one-dimensional dataset5 considered in Snelson and Ghahramani

(2006) that consists of 200 training points; see Figure 1. We train a sparse GP model using the squared

exponential kernel defined by σ2
f exp(− 1

2ℓ2
||xi−xj ||

2). Since the dataset is small and the full GP model is

tractable, we compare the sparse approximations with the exact GP prediction. The plots in the first row

of Figure 1 show the predictive distributions for the three methods assuming 15 inducing inputs. The left

plot displays the mean prediction with two-standard error bars (shown as blue solid lines) obtained by the

maximization of FV . The prediction of the full GP model is displayed using dashed red lines. The middle

5obtained from www.gatsby.ucl.ac.uk/∼snelson/.
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Figure 1: The first row corresponds to 200 training points and the second row to 20 training points. The first
column shows the prediction (blue solid lines) obtained by maximizing FV over the 15 pseudo-inputs and the
hyperparameters. The full GP prediction is shown with red dashed lines. Initial locations of the pseudo-inputs
are shown on the top as crosses, while final positions are given on the bottom as crosses. The second column
shows the predictive distributions found by PP and similarly the third column for SPGP.

plot shows the corresponding solution found by PP and the right plot the solution found by SPGP.

The prediction obtained by the variational method almost exactly reproduces the full GP prediction.

The final value of the variational lower bound was −55.5708, while the value of the maximized true

log marginal likelihood was −55.5647. Further, the estimated hyperparameters found by FV match the

hyperparameters found by maximizing the true log marginal likelihood. In contrast, training the sparse

model using the PP log likelihood gives a poor approximation. The SPGP method gave a much more

satisfactory answer than PP although not as good as the variational method.

To consider a more challenging problem, we decrease the number of the original 200 training examples

by maintaining only 20 of them6. We repeat the experiment above using exactly the same setup. The

second row of Figure 1, displays the predictive distributions of the three methods. The prediction of the

variational method is identical to the full GP prediction and the hyperparameters match those obtained

by full GP training. On the other hand, the PP log likelihood leads to a significant overfitting of the

training data since the mean curve interpolates the training points and the error bars are very noisy.

SPGP provides a solution that significantly disagrees with the full GP prediction both in terms of the

mean prediction and the errors bars. Notice that the width of the error bars found by SPGP varies a lot

in different input regions. This nonstationarity is achieved by setting σ2 very close to zero and modelling

the actual noise by the heteroscedastic diagonal matrix diag[Knn − KnmK−1
mmKmn]. The fact that this

diagonal matrix (the sum of its elements is the trace Tr(Knn −Qnn)) is large indicates that the full GP

model is not well approximated.

The reason PP and SPGP do not recover the full GP model when we optimize over (Xm, σ2,θ) is not

the local maxima. To clarify this point, we repeated the experiments by initializing the PP and SPGP

log likelihoods to optimal inducing inputs and hyperparameters values where the later are obtained by

full GP training. The predictions found are similar to those shown in Figure 1. A way to ensure that

6The points were chosen from the original set according to the MATLAB command: X = X(1:10:end).
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the full GP model will be recovered as we increase the number of inducing inputs is to select them from

the training inputs. This, however, turns the continuous optimization problem into a discrete one and

moreover PP and SPGP face the non-smooth convergence problem.

Regarding FV , it is clear from section 3 that by maximizing over Xm we approach the full GP

model in the sense of KL(q(f , fm)|p(f , fm|y)). Something less clear is that FV efficiently regularizes the

hyperparameters (σ2,θ) so as overfitting is avoided. This is achieved by the regularization trace term:

− 1
2σ−2Tr(Knn − Qnn). When this trace term is large because there are not sufficiently many inducing

variables, this term favours kernel parameters that give a smoother function. Also, when the trace term

is large the decomposition in eq. (18) implies that σ2 must increase as well. These properties are useful

for avoiding overfitting and also imply that the prediction obtained by FV will tend to be smoother than

the prediction of the full GP model. In contrast, the PP and SPGP log likelihoods can find more flexible

solutions than the full GP prediction which indicates that they are prone to overfitting.

5 Experiments

In this section we compare the variational lower bound (VAR), the projected process approximate log

likelihood (PP) and the sparse pseudo-inputs GP (SPGP) log likelihood in four real datasets. As a

baseline technique, we use the subset of data (SD) method. For all sparse GP methods we jointly

maximize the alternative objective functions w.r.t. hyperparameters (θ, σ2) and the inducing inputs Xm

using the conjugate gradients algorithm. Xm is initialized to a randomly chosen subset of training

inputs. In each run all methods are initialized to the same inducing inputs and hyperparameters. The

performance criteria we use are the standardized mean squared error (SMSE), given by 1
T

||y∗−f∗||
2

var(y∗) , and

the standardized negative log probability density (SNLP) as defined in (Rasmussen and Williams, 2006).

Smaller values for both error measures imply better performance. In all the experiments we use the

squared-exponential kernel with varied length-scale.

Firstly, we consider the Boston-housing dataset, which consists of 455 training examples and 51

test examples. Since the dataset is small, full GP training is tractable. In the first experiment, we

fix the parameters (θ, σ2) to values obtained by training the full GP model. Thus we can investigate

the difference of the methods solely on how the inducing inputs are selected. We rigorously compare

the methods by calculating the moments-matching divergence KL(p(f∗|y)||q(f∗)) between the true test

posterior p(f∗|y) and each of the approximate test posteriors. For the SPGP method the approximate test

posterior distribution is computed by using the exact test conditional p(f∗|fm). Figure 2(a) show the KL

divergence as the number of inducing points increases. Means and one-standard error bars were obtained

by repeating the experiment 10 times. Note that only the VAR method is able to match the full GP

model; for around 200 points we closely match the full GP prediction. Interestingly, when the inducing

inputs are initialized to all training inputs, i.e. Xm = X, PP and SPGP still give a different solution

from the full GP model despite the fact that the hyperparameters are kept fixed to the values of the

full GP model. The reason this is happening is that they are not lower bounds to the true log marginal

likelihood and as shown in Figure 2(c) they become upper bounds. To show that the effective selection of

the inducing inputs achieved by VAR is not a coincidence, we compare it with the case where the inputs

are kept fixed to their initial randomly selected training inputs. Figure 2(b) displays the evolution of the

KL divergence for the VAR, the random selection plus PP (RSPP) and the SD method. Note that the

only difference between VAR and RSPP is that VAR optimizes the lower bound over the initial values of

11



100 200 300 400

0

10

20

30

40

50

60

70

Number of inducing variables

K
L(

p|
|q

)
VAR
PP
SPGP

100 200 300 400

0

10

20

30

40

50

60

70

Number of inducing variables

K
L(

p|
|q

)

VAR
RSPP
SD

100 200 300 400
−1500

−1000

−500

0

Number of inducing variables

Lo
g 

m
ar

gi
na

l l
ik

el
ih

oo
d

FullGP
VAR
PP
SPGP

(a) (b) (c)

100 200 300 400
0.05

0.1

0.15

0.2

Number of inducing variables

S
M

S
E

FullGP
VAR
PP
SPGP

100 200 300 400
−1.5

−1

−0.5

0

0.5

1

1.5

2

Number of inducing variables

S
N

LP

FullGP
VAR
PP
SPGP

100 200 300 400
−600

−400

−200

0

200

400

Number of inducing variables

Lo
g 

m
ar

gi
na

l l
ik

el
ih

oo
d

FullGP
VAR
PP
SPGP

(d) (e) (f)

Figure 2: (a) show the KL divergence as the number of inducing variables increases for the VAR the PP and SPGP
methods. Similarly (b) show the divergence for the VAR, RSPP and SD methods. (c) displays the approximate
log marginal likelihoods; the true log marginal likelihood value is displayed by using the dotted horizontal line.
(d) and (e) show the SMSE and SNLP errors (obtained by joint learning hyperparameters and inducing-inputs)
against the number of inducing variables. (f) shows the corresponding log marginal likelihoods.

the inducing inputs, while RSPP just keep them fixed. Clearly RSPP significantly improves over the SD

prediction, and VAR significantly improves over RSPP.

In a second experiment, we jointly learn inducing variables and hyperparameters and compare the

methods in terms of the SMSE and SNLP errors. The results are displayed in the second row of Figure

2. Note that the PP and SPGP methods achieve a much higher log likelihood value (Figure 2(f)) than

the true log marginal likelihood. However, the error measures clearly indicate that the PP log likelihood

significantly overfits the data. SPGP gives better SMSE error than the full GP model but it overfits

w.r.t. the SNLP error. The variational method matches the full GP model.

We now consider three large datasets: the kin40k dataset, the sarcos and the abalone datasets7

that have been widely used before. Note that the abalone dataset is small enough so as we will be able

to train the full GP model. The inputs were normalized to have zero mean and unit variance on the

training set and the outputs were centered so as to have zero mean on the training set. For the kin40k

and the sarcos datasets, the SD method was obtained in a subset of 2000 training points. We vary the

size of the inducing variables in powers of two from 16 to 1024. For the sarcos dataset, the experiment

for 1024 was not performed since is was unrealistically expensive. All the objective functions were jointly

maximized over inducing inputs and hyperparameters. The experiment was repeated 5 times. Figure 3

shows the results.

From the plots in Figure 3, we can conclude the following. The PP log likelihood is significantly

prone to overfitting as the SNLP errors clearly indicate. However, note that in the kin40k and sarcos

7
kin40k: 10000 training, 30000 test, 8 attributes, ida.first.fraunhofer.de/ anton/data.html.

sarcos: 44, 484 training, 4, 449 test, 21 attributes, www.gaussianprocess.org/gpml/data/.
abalone: 3, 133 training, 1, 044 test, 8 attributes, www.liaad.up.pt/ ltorgo/Regression/DataSets.html.

12



0 200 400 600 800 1000
0

0.05

0.1

Number of inducing variables

S
M

S
E

SD
VAR
PP
SPGP

0 100 200 300 400 500
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of inducing variables

S
M

S
E

SD
VAR
PP
SPGP

0 200 400 600 800 1000
0.4

0.42

0.44

0.46

0.48

0.5

Number of inducing variables

S
M

S
E

FullGP
VAR
PP
SPGP

0 200 400 600 800 1000

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Number of inducing variables

S
N

LP

SD
VAR
PP
SPGP

0 100 200 300 400 500
−2.5

−2

−1.5

−1

−0.5

0

Number of inducing variables

S
N

LP

SD
VAR
PP
SPGP

0 200 400 600 800 1000

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Number of inducing variables

S
N

LP

FullGP
VAR
PP
SPGP

Figure 3: The first column displays the SMSE (top) and SNLP (bottom) errors for the kin40k dataset with
respect to the number of inducing points. The second column shows the corresponding plots for the sarcos

dataset and similarly the third column shows the results for the abalone dataset.

datasets, PP gave the best performance w.r.t. to SMSE error. This is probably because of the ability of

PP to interpolate the training examples that can lead to good SMSE error when the actual observation

noise is low. SPGP often has the worst performance in terms of the SMSE error and almost always the

best performance in terms of the SNLP error. In the abalone dataset, SPGP had significantly better

SNLP error than the full GP model. Since the SNLP error depends on the predictive variances, we

believe that the good performance of SPGP is due to its heteroscedastic ability. For example, in the

kin40k dataset, SPGP makes σ2 almost zero and thus the actual noise in the likelihood is modelled

by the heteroscedastic covariance diag[Knn − KnmK−1
mmKmn]. The fact that the latter term is large

may indicate that the full GP model is not well approximated. Finally the variational method has good

performance. VAR never had the worst performance and it didn’t exhibit overfitting. The examples in

section 4, the Boston-housing and the abalone dataset indicate that the VAR method remains much

closer to the full GP model than the other methods.

6 Adding “jitter” and more general inducing variables

In this section, and in order to address future research regarding sparse GP methods using inducing

variables, we discuss the use of more general inducing variables than those being just function points.

We do this by giving an example of how to slightly generalize the variational inference method so that

to numerically stabilize the lower bound and the sparse GP prediction. This involves the usual trick of

adding a “jitter” factor to the covariance matrix Kmm of the inducing points. We will show that this is

actually rigorous and has a precise mathematical interpretation. Our discussion will have a more general

outlook.

To start with, observe that when we maximize the exact log marginal likelihood in eq. (4) (assuming

for now that we deal with small datasets) we need to invert the matrix Knn + σ2I. This is usually
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carried out by computing the Cholesky decomposition of this matrix. While the kernel matrix Knn can

be (in computer precision) singular, i.e. it will have some zero eigenvalues, the matrix Knn + σ2 will

often be strictly positive definite due to the addition of σ2 in the diagonal of Knn. Thus, σ2 naturally

acts as a “jitter” term that numerically stabilizes the computation of the Cholesky decomposition and

subsequently the whole optimization of the log marginal likelihood. This, however, is not true for the

sparse approximations to the exact marginal likelihood, neither for the PP and SPGP log marginal

likelihoods in eq. (5) nor for the variational lower bound in eq. (16). The reason is that now we have

to explicitly invert the kernel matrix Kmm evaluated at the inducing inputs without adding a positive

number to the diagonal. To deal with that in a software implementation the common approach is to add

a small “jitter” in the diagonal of Kmm. But what is the consequence of this regarding the mathematical

properties of the objective function that we optimize? Next we show that for the variational method

adding “jitter” leads to a generalized lower bound on the exact log marginal likelihood. In fact “jitter”

will turn out to be another variational parameter and we can optimize over it.

The variational method in section 3, applies inference in an expanded probability space. Particularly,

we started with the joint model p(y, f), we augmented it to form p(y, f , fm) and then fitted an augmented

variational distribution q(f , fm) to the exact posterior p(f , fm|y). The key property that made this a

correct8 inference procedure is the consistency condition between the original and the augmented model:

p(y, f) =

∫

p(y, f , fm)dfm,

which is true because fm are function values drawn from the GP prior, i.e. it holds p(f) =
∫

p(f , fm)dfm.

Its rather interesting to observe now that there is nothing in the above augmentation procedure that says

that the newly introduced random variables must be function points of exactly the same type as f . So

let us augment with a different type of inducing variables, denoted by λ, that are not precisely function

values drawn from the GP prior, but instead they are noisy versions of functions values:

λ = fm + ǫ, ǫ ∼ N(0, vIm), (19)

where fm, as before, is a vector of m auxiliary GP function values evaluated at the pseudo-inputs Xm

and v is a noise variance parameter. Note that when v = σ2, then λ can be considered as pseudo-output

data, however, this is rather restrictive and it is better to let v be a free parameter. The covariance

of λ is Kλλ = Kmm + vI and the cross covariance matrix between f and λ is Knλ = Knm. Thus

augmenting the Gaussian prior p(f) with inducing variables λ we obtain p(f ,λ) = p(f |λ)p(λ) which, of

course, satisfies the consistency condition p(f) =
∫

p(f ,λ)dλ. Therefore, exact inference in the model

p(y, f) (e.g. computing the marginal likelihood p(y)) can be equivalently performed using the augmented

model

p(y, f ,λ) = p(y|f)p(f |λ)p(λ). (20)

However, doing approximate inference in the augmented model can be more flexible because the “free”

parameters (Xm, v) can be treated as variational parameters. Thus, following the method described in

section 3, and assuming the variational distribution q(f ,λ) = p(f |λ)φ(λ), we compute a lower bound to

8In the sense that when the KL divergence becomes zero, then the variational distribution allows to compute exactly
the true posterior p(f |y).
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the exact log marginal likelihood:

FV (Xm, v) = log
[

N(y|0, σ2I + Knm(Kmm + vIm)−1Kmn)
]

(21)

−
1

2σ2
Tr(Knn − Knm(Kmm + vIm)−1Kmn).

This only differs from the initial bound of eq. (16) in that the “jitter” term, that is v, has been added

to the diagonal of Kmm which makes the above bound slightly more general. To summarize, we just

showed that adding “jitter” in the diagonal of Kmm gives always a lower bound on log p(y). The sparse

GP prediction in eq. (8) is also affected since now it is expressed through q(z|y) =
∫

p(z|λ)φ(λ)dλ

(analogously to eq. (7)) where the role of approximate sufficient statistics is played by λ. Notice that

the “jitter” v is actually a variational parameters as Xm is, so we can optimize over both of them. A

sensible optimization strategy is to initialize v to a large value. This will help to numerically stabilize

the optimization at the first crucial iterations and allow also to escape from local maxima. After few

iterations v will typically become close to zero and we can constrain it to be larger than a certain minimum

“jitter” value. The fact that v will approach zero as we optimize is because the noisy-free latent function

values fm are more informative about f compared to their noisy counterparts fm + ǫ. More precisely,

the accuracy of the variational distribution q(f ,λ) = p(f |λ)φ(λ) depends on how much informative (i.e.

deterministic) is the conditional GP prior p(f |λ) and among all λs is eq. (19) the most deterministic

conditional prior is obtained when v = 0.

We address now the issue of what random variables could be used as inducing variables. A general

answer is that any linear functional involving the GP function f(x) can be an inducing variable. An useful

set of inducing variables, λ, should allow to decrease significantly the uncertainty in the conditional prior

p(f |λ), which is part of the variational distribution. So good λs are those that can predict f with high

certainty. From practical point of view inducing variables must be such that the covariance matrix Kλλ

and the cross covariance matrix Knλ are computed both in closed-form and in a reasonable time so that

the complexity of maximizing the variational lower bound will remain of order O(nm2).

We shall now draw a more general picture regarding the variational sparse GP method and the

methods based on modifying the GP model. Assume we define a set of inducing variables λ for which

the Knλ and Kλλ are computed analytically. Then, we can augment the joint model similarly to eq. (20).

This involves the introduction of some parameters θλ, for example, when we use the “jitter” inducing

variables λ = fm + ǫ, these parameters are θλ = (Xm, v). The variational method has the property that

automatically turns the augmentation parameters θλ into variational parameters that are selected so that

the KL divergence is minimized. In contrast, for the SPGP or PP method, or any other method based

on the philosophy of modifying the GP prior or likelihood, the θλ parameters will be part of the model

hyperparameters that are tuned in order to fit the data and not to approximate the exact GP model.

7 Discussion

We proposed a variational framework for sparse GP regression that can reliably learn inducing inputs and

hyperparameters by minimizing the KL divergence between the true posterior GP and an approximate

one. This approach starts with the full GP model and applies standard variational inference without

introducing any approximation to the likelihood or the GP prior. The variational distribution follows the

factorization that holds for optimally selected inducing variables. This method can be more generally
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applicable. An interesting topic for the future is to apply this method to GP models that assume multiple

latent functions and consider also models with non-Gaussian likelihood functions, such as classification.

Furthermore, for the standard GP regression model discussed in this paper, the variational inference

method gave rise to the PP/DTC prediction (Csato and Opper, 2002; Seeger et al., 2003). However, the

SPGP/FITC prediction is considered to be more accurate that the PP/DTC prediction (Snelson, 2007;

Quiñonero-Candela and Rasmussen, 2005). This arises the question: can we reformulate FITC so that

the selection of the inducing inputs and hyperparameters can be achieved by maximizing a variational

lower bound. An attempt to define such a bound is given in the appendix C. This bound is derived by

starting with a full GP model that does not correspond to the standard GP regression, but instead it is

a more flexible model that explains heteroscedastic noise in the output data.
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A Variational lower bound and optimal distribution φ∗

The true log marginal likelihood is written as follows:

log p(y) = log

Z
p(y|f)p(f |fm)p(fm)dfdfm. (22)

Introducing the variational distribution q(f , fm) = p(f |fm)φ(fm) and applying Jensen’s inequality we obtain the

lower bound:

FV (Xm, φ) =

Z
p(f |fm)φ(fm) log

p(y|f)p(f |fm)p(fm)

p(f |fm)φ(fm)
dfdfm

=

Z
p(f |fm)φ(fm) log

p(y|f)p(fm)

φ(fm)
dfdfm. (23)

It can be written as

FV (Xm, φ) =

Z
φ(fm)

Z
p(f |fm) log p(y|f)df + log

p(fm)

φ(fm)

ff
dfm. (24)

The integral involving f is computed as follows

log G(fm,y) =

Z
p(f |fm) log p(y|f)df

=

Z
p(f |fm)


−

n

2
log(2πσ

2) −
1

2σ2
Tr

h
yy

T − 2yf
T + ff

T
iff

df

= −
n

2
log(2πσ

2) −
1

2σ2
Tr

h
yy

T − 2yα
T + αα

T + Knn − Qnn

i
, (25)

where α = E[f |fm] = KnmK−1
mmfm and Qnn = KnmK−1

mmKmn. From the above we can recognize the expression

log G(fm,y) = log
ˆ
N(y|α, σ

2
I)

˜
−

1

2σ2
Tr(Knn − Qnn). (26)

FV (Xm, φ) is now written as

FV (Xm, φ) =

Z
φ(fm) log

N(y|α, σ2I)p(fm)

φ(fm)
dfm −

1

2σ2
Tr(Knn − Qnn). (27)
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We can now maximize this bound w.r.t. the distribution φ. The usual way of doing this is to take the derivative

w.r.t. φ(fm), set to zero and obtain the optimal φ∗(fm) = N(y|α,σ2I)p(fm)
R

N(y|α,σ2I)p(fm)dfm
. Then by substituting φ∗(fm) back

to eq. (27) we can compute the optimal bound w.r.t. to the distribution φ. However, since φ was not constrained

to belong to any restricted family of distributions, a faster and by far simpler way to compute the optimal bound

is by reversing the Jensen’s inequality, i.e. moving the log outside of the integral in eq. (27). This gives

FV (Xm) = log

Z
N(y|α, σ

2
I)p(fm)dfm −

1

2σ2
Tr(Knn − Qnn)

= log
ˆ
N(y|0, σ

2
I + Qnn)

˜
−

1

2σ2
Tr(Knn − Qnn). (28)

The optimal distribution φ that gives rise to this bound is given by

φ
∗(fm) ∝ N(y|α, σ

2
I)p(fm)

= c exp


−

1

2
f

T
m(K−1

mm +
1

σ2
K

−1
mmKmnKnmK

−1
mm)fm +

1

σ2
y

T
KnmK

−1
mmfm

ff
, (29)

where c is a constant. Completing the quadratic form we recognize the Gaussian

φ
∗(fm) = N(fm|σ−2

KmmΣ−1
Kmny, KmmΣ−1

Kmm), (30)

where Σ = Kmm + σ−2KmnKnm.

B Detailed proof of Proposition 1

Let the inducing variables be a subset of the training examples indexed by m ⊂ {1, . . . , n}. We also use m to

denote the number of these variables. The training points that are not part of the inducing set are indexed by

n − m and are called the remaining points, e.g. fn−m denotes the remaining latent function values.

The variational distribution we use to bound the true log marginal likelihood is

qm(f) = p(fn−m|fm)φm(fm), (31)

where we introduced m as an index of q and φ to emphasize that this variational distribution assumes m inducing

variables. The variational bound takes the form

log p(y) ≥

Z

f

p(fn−m|fm)φm(fm) log
p(y|f)p(fn−m|fm)p(fm)

p(fn−m|fm)φm(fm)
df

=

Z

f

p(fn−m|fm)φ(fm) log
p(y|f)p(fm)

φ(fm)
df

= FV (Xm, φ). (32)

The maximum value of this bound that corresponds to the optimal φ∗(fm) is

FV (Xm) = log
ˆ
N(y|0, σ

2
I + KnmK

−1
mmKmn)

˜
−

1

2σ2
Tr(K(n−m)(n−m) − K(n−m)mK

−1
mmKm(n−m)). (33)

Note that FV (Xm) ≥ FV (Xm, φm) for any distribution φm(fm).

Proposition 1. Let (Xm, fm) be the current set of inducing variables and m the corresponding set of indices.

Any point i ∈ n − m added into the inducing set can never decrease the lower bound in eq. (33).

Proof: For the added training input xi, we have to show that FV (Xm,xi) ≥ FV (Xm). Let fm+1 = (fm, fi)

and Xm+1 = (Xm,xi). The variational distribution qm(f) that corresponds to the bound FV (Xm) can be written
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in the form

qm(f) = p(fn−(m+1), fi|fm)φ∗
m(fm),

= p(fn−(m+1)|fi, fm)p(fi|fm)φ∗
m(fm), (34)

where φ∗
m(fm) is the optimal choice for φm. This quantity has the same form with the variational distribution

qm+1(f) where eφm+1(fm+1) = p(fi|fm)φ∗(fm). Notice that this eφm+1 may not be optimal. Thus, by construction

FV (Xm+1, eφm+1(fm+1)) = FV (Xm) with FV (Xm+1, eφm+1) computed by eq. (32). Computing the bound for the

optimal φ∗
m+1(fm+1) in order to maximize w.r.t that distribution we obtain

FV (Xm+1) ≥ FV (Xm+1, eφm+1(fm+1)) = FV (Xm).

This completes the proof. Note that strict inequality can hold when the optimal φ∗
m+1(fm+1) differs than

p(fi|fm)φ∗
m(fm).

C Variational reformulation of the SPGP model

The input-constant noise GP model with likelihood p(y|f) = N(y|f , σ2) can be restrictive when the actual noise of

the data varies across the input space. A sparse GP method that can model input-dependent noise was proposed by

Snelson and Ghahramani (2006). Assume a set of pseudo-inputs Xm and inducing latent function values fm, where

fm is drawn from the GP prior. The covariance matrix of the conditional prior p(f |fm), i.e. Knn −KnmK−1
mmKmn,

can have non-stationary properties although the kernel function of the GP prior is stationary. The diagonal of

this conditional matrix can be used to parametrize an input-dependent variance. The likelihood takes the form

p(y|f) = N(y|f , Λ), (35)

where Λ = σ2 + diag[Knn − KnmK−1
mmKmn]. The likelihood parameters are (σ2, Xm, θ) where θ are the kernel

parameters of the GP prior. Note that the parameters θ are common for the prior and the likelihood.

The marginal likelihood can be written as

p(y) =

Z
p(y|f)p(f)df

=

Z
p(y|f)p(f |fm)p(fm)dfdfm (36)

where we augmented the GP prior on the training latent function f with the latent function values fm evaluated

at the pseudo-inputs Xm. We assume the variational distribution

q(f , fm) = p(f |fm)φ(fm). (37)

Using this distribution we can bound the true log marginal likelihood and obtain the lower bound:

FV (Xm, φ) =

Z
p(f |fm)φ(fm) log

p(y|f)p(fm)

φ(fm)
dfdfm

=

Z
φ(fm)

Z
p(f |fm) log p(y|f)df + log

p(fm)

φ(fm)

ff
dfm. (38)
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The integral involving f is computed as follows

log G(fm,y) =

Z
p(f |fm) log p(y|f)df

=

Z
p(f |fm)


−

n

2
log(2π) −

1

2
log |Λ| −

1

2
Tr

h
Λ−1(yy

T − 2yf
T + ff

T )
iff

df

= −
n

2
log(2π) −

1

2
log |Λ| −

1

2
Tr

h
Λ−1(yy

T − 2yα
T + αα

T + Knn − Qnn

i
, (39)

where α = E[f |fm] = KnmK−1
mmfm and Qnn = KnmK−1

mmKmn. The above quantity can also be written as

log G(fm,y) = log [N(y|α, Λ)] −
1

2
Tr[Λ−1(Knn − Qnn)]. (40)

FV (Xm, φ) is now written as

FV (Xm, φ) =

Z
φ(fm) log

N(y|α, Λ)p(fm)

φ(fm)
dfm −

1

2
Tr[Λ−1(Knn − Qnn)]. (41)

We can maximize this bound by reversing the Jensen’s inequality:

FV (Xm) = log

Z
N(y|α, Λ)p(fm)dfm −

1

2
Tr[Λ−1(Knn − Qnn)]

= log [N(y|0, Λ + Qnn)] −
1

2
Tr[Λ−1(Knn − Qnn)]. (42)

To compute the optimal distribution φ∗ we differentiate eq. (41) with respect to φ(fm) and set to zero. This gives

φ
∗(fm) ∝ N(y|α, Λ)p(fm)

= c exp


−

1

2
f

T
m(K−1

mm + K
−1
mmKmnΛ−1

KnmK
−1
mm)fm + y

T Λ−1
KnmK

−1
mmfm

ff
. (43)

From the above expression we can recognize the Gaussian

φ
∗(fm) = N(fm|KmmΣ−1

KmnΛ−1
y, KmmΣ−1

Kmm) (44)

where Σ = Kmm + KmnΛ−1Knm. This distribution is exactly the one used by the SPGP model of Snelson and

Ghahramani (2006). Particularly, when we do predictions assuming the exact test conditional p(f∗|fm), the above

framework gives rises to the FITC prediction. The difference of the variational formulation with the SPGP/FITC

method is that the former starts with an input-dependent noise full GP model and derives a variational bound

for this model. The first term of the lower bound is the log marginal likelihood used by the SPGP model and the

second term involves the trace of Λ−1(Knn − Qnn).
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