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Abstract

We propose a simple and effective variational
inference algorithm based on stochastic optimi-
sation that can be widely applied for Bayesian
non-conjugate inference in continuous parameter
spaces. This algorithm is based on stochastic ap-
proximation and allows for efficient use of gra-
dient information from the model joint density.
We demonstrate these properties using illustra-
tive examples as well as in challenging and di-
verse Bayesian inference problems such as vari-
able selection in logistic regression and fully
Bayesian inference over kernel hyperparameters
in Gaussian process regression.

1. Introduction

Modern machine learning and statistical applications re-
quire large scale inference in complex models. Bayesian
learning provides a probabilistic framework for inference
that combines prior knowledge with observed data in a
principled manner. However, apart from simple cases in-
volving conjugate models, the Bayesian computations are
intractable and approximations based on either Markov
Chain Monte Carlo (MCMC) (Robert & Casella, 1999) or
variational Bayesian inference (Jordan et al., 1999; Neal
& Hinton, 1999; Wainwright & Jordan, 2008) are needed.
While MCMC can provide unbiased estimates of Bayesian
expectations, in practice designing MCMC algorithms that
reliably converge to the stationary posterior distribution can
be a notoriously difficult task especially in complex non-
conjugate models. On the other hand, variational methods
formulate Bayesian inference as an optimization problem,
where the objective function is constructed to be a lower
bound on the marginal likelihood. This can allow for faster
algorithms having a simpler mechanism for monitoring
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convergence. Despite that, the variational approach can-
not be applied as widely as MCMC and this is because the
variational objective function requires a high dimensional
expectation that becomes intractable for non-conjugate and
highly non-linear models.

In this paper, we expand the range of applicability of
variational inference algorithms by introducing a simple
stochastic optimization algorithm that can be widely ap-
plied in non-conjugate models where the joint probabil-
ity densities are differentiable functions of the parameters.
This algorithm is based on stochastic approximation (Rob-
bins & Monro, 1951) and differs from other work on non-
conjugate stochastic variational inference (Paisley et al.,
2012; Ranganath et al., 2014; Mnih & Gregor, 2014) by
allowing for efficient use of gradient information from the
model joint density. We demonstrate these properties us-
ing illustrative examples as well as in challenging and di-
verge Bayesian estimation problems such as variable se-
lection in logistic regression and fully Bayesian inference
over kernel hyperparameters in Gaussian process regres-
sion (Rasmussen & Williams, 2006). For the former ap-
plication we also introduce a variational objective func-
tion, suitable for general-purpose sparse inference, which is
hyperparameter-free in the sense that the optimisation over
the initial sparsity-determining hyperparameters is dealt
with analytically. For the latter application our method pro-
vides a general variational inference technique for hyperpa-
rameters in Gaussian process regression that is widely ap-
plicable to differentiable kernel functions, demonstrating
also a very close agreement with ground-truth Monte Carlo
estimates obtained by much slower MCMC runs.

Furthermore, the proposed algorithm introduces stochas-
ticity by sampling from the variational distribution. This
differs from the data sub-sampling stochasticity used in the
variational framework proposed by Hoffman et al. (2010;
2013). We show how to combine the two types of stochas-
ticity, thus deriving a doubly stochastic variational infer-
ence algorithm, allowing for efficient non-conjugate infer-
ence for large scale problems. We demonstrate experimen-
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tally this doubly stochastic scheme in large-scale Bayesian
logistic regression.

Independently from our work, Kingma & Welling (2013)
and Rezende et al. (2014) also derived doubly stochastic
variational inference algorithms by utilising gradients from
the joint probability density. Our work provides an addi-
tional perspective and it specialises also on different type
of applications such as variable selection and Gaussian pro-
cess hyperparameter learning.

2. Theory

Consider a random vector z € RP that follows a distri-
bution with a continuous density function ¢(z). We shall
assume ¢(z) to exist in standard form so that any parame-
ter mean vector is set to zero and scale parameters are set
to one. For instance, ¢»(z) could be the standard normal
distribution, the standard ¢ distribution, a product of stan-
dard logistic distributions, etc. We often refer to ¢(z) as
the standard distribution and for the time being, we shall
leave it unspecified and develop the theory in a general set-
ting. A second assumption we make about ¢(z) is that
it permits straightforward simulation of independent sam-
ples. We aim to utilise the standard distribution as a build-
ing block for constructing correlated variational distribu-
tions. While ¢(z) has currently no structure, we can add
correlation by applying an invertible transformation,

0=Cz+p,

where the scale matrix C' is taken to be a lower triangu-
lar positive definite matrix (i.e. its diagonal elements are
strictly positive) and g is a real vector. Given that the Ja-
cobian of the inverse transformation is the distribution
over 0 takes the form

ICI’

q(8|p, C) = (C7HO —m)), (1)

1
C
which is a multivariate and generally correlated distribu-
tion having as adjustable parameters the mean vector
and the scale matrix C. We wish to employ ¢(0|u,C)
as a variational distribution for approximating the exact
Bayesian posterior in the general setting where we have a
non-conjugate model. More precisely, we consider a prob-
abilistic model with the joint density

9(0)

where y are data and @ € RP are all unobserved random
variables which can include both latent variables and pa-
rameters. Following the standard variational Bayes infer-
ence method (Jordan et al., 1999; Neal & Hinton, 1999;
Wainwright & Jordan, 2008) we seek to minimise the KL
divergence KL[q(8|u, C)||p(@]y)] between the variational

= p(y|0)p(0), 2)

and the true posterior distribution. This can equivalently
formulated as the maximisation of the following lower
bound on the log marginal likelihood,

f(u,C):/q(Olu,C) log q(;(:)md@, 3)

where ¢(8|p, C) is given by (1). By changing variables
according to z = C~1(0 — p), the above is written as
9(Cz + p)|C|

0= [ o) $(2)

= Eg(z) [log g(Cz + p)] +1og |C| + He, 4

——— dz

where log|C| = Ele log Cyqq and Hg denotes the en-
tropy of ¢(z) which is constant with respect to the vari-
ational parameters (p, C') and therefore it can be ignored
when maximising the bound. Also notice that the above re-
quires integration over the distribution ¢»(z) which exists in
standard form and therefore it does not depend on the varia-
tional parameters (, C'). These parameters somehow have
been transferred inside the logarithm of the joint density.

Further, it is worth noticing that when the logarithm of the
joint model density, i.e. log g(8), is concave with respect
to 6, the lower bound in (4) is also concave with respect
to the variational parameters (, C') and this holds for any
standard distribution ¢(z); see the supplementary material
for a formal statement and proof. This generalises the result
of Challis & Barber (2011; 2013), who proved it for the
variational Gaussian approximation, and it is similar to the
generalisation presented in (Staines & Barber, 2012).

To fit the variational distribution to the true posterior, we
need to maximise the bound (4) and therefore we consider
the gradients over p and C,

VuF(u,C) =
VC’]:(HHC)

Eg(z) [Vulogg(Cz + )], )
=By [Vologg(Cz + )l + Ac, (6)

where A¢ denotes the diagonal matrix with elements
(1/C11,...,1/Cpp) in the diagonal. Also the term
Velogg(Cz + p) in eq. (6) should be understood as the
partial derivatives w.r.t. C' stored in a lower triangular ma-
trix so that there is one-to-one correspondence with the
elements in C. A first observation about the gradients
above is that they involve taking derivatives of the loga-
rithm of the joint density by adding randomness through
z and then averaging out. To gain more intuition, we
can equivalently express them in the original space of 6
by changing variables in the reverse direction according
to @ = Cz + p. Using the chain rule we have that
V,1ogg(Cz+ p) = Vg log g(Cz + p) and similarly
Velog g(Cz+p) = Vgt log g(Cz+p)z! where again
Veoiplogg(Cz + p)z” should be understood as taking
the lower triangular part after performing the outer vector
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Algorithm 1 Doubly stochastic variational inference
Input: ¢, y, 0, Vlogg.
Initialise u(©), C(®, ¢t = 0.
repeat
t=t+1;
z ~ P(z);
9t~ — o(t=1), 4 H(tﬂ);
p = p=Y 4 p,Velogg(0“ V) ;
c® =ct-b 4, (Vg logg(e(t_l)) x zT + Aca,l));
until convergence criterion is met.

product. These observations allow to transform (5) and (6)
in the original space of @ as follows,

VuF (1, C) = Eqgu,c) [Vologg(8)], (7
VeF (1, C) = Eyoju.c) [Veologg(8) x (0 — u)"'C~ "]
+ Ac, (8

Eq. (7) is particularly intuitive as it says that the gradient
over p is simply the gradient of the logarithm of the joint
density with respect to the parameters @ averaged over the
variational distribution.

We would like now to optimise the variational lower bound
over (u,C') using a stochastic approximation procedure.
To this end, we need to provide stochastic gradients having
as expectations the exact quantities. Based on the expres-
sions (5)-(6) or their equivalent counterparts (7)-(8) we can
proceed by firstly drawing 8'*) ~ ¢(8|p, C), and then us-
ing Vg log g(0®)) as the stochastic direction for updating
p and Vg log g(8'®) x (0©) — )TC~7 as the direction
for updating C'. To draw 0, we need first to sample z
from ¢(z) (which by assumption is possible) and then de-
terministically obtain 0 = Cz + (. Based on the latter
(0 — p)TCT is just 27, therefore the computationally
efficient way to implement the whole stochastic approxi-
mation scheme is as summarised in Algorithm 1.

Based on the theory of stochastic approximation (Robbins
& Monro, 1951), using a schedule of the learning rates {p; }
such that 3" p;, = o0, Y p? < oo, the iteration in Algo-
rithm 1 will converge to a local maxima of the bound in (3)
or to the global maximum when this bound is concave. For
notational simplicity we have assumed common learning
rate sequences for p and C, however, in practice we can
use different sequences and the algorithm remains valid.

We will refer to the above stochastic approximation algo-
rithm as doubly stochastic variational inference (DSVI) be-
cause it introduces stochasticity in a different direction than
the standard stochastic variational inference proposed by
(Hoffman et al., 2010; 2013). The latter is based on sub-
sampling the training data and performing online parame-
ter updates by using each time a single data point or a small

“mini-batch” which is analogous to other online learning
algorithms (Bottou, 1998; Bottou & Bousquet, 2008). In-
stead, our algorithm introduces stochasticity by sampling
from the variational distribution. Notice that the latter
type of stochasticity was first introduced by (Paisley et al.,
2012) who proposed a different stochastic gradient for vari-
ational parameters that we compare against in Section 2.2.
For joint probability models with a factorised likelihood,
the two types of stochasticity can be combined so that in
each iteration the stochastic gradients are computed by both
sampling from the variational distribution and using a mini-
batch of n < N data points. It is straightforward to see that
such doubly stochastic gradients are unbiased estimates of
the true gradients and therefore the whole scheme is valid.
In the experiments, we demonstrate the double stochastic-
ity for learning from very large data sets in Bayesian logis-
tic regression. However, for simplicity in the remainder of
our presentation we will not analyse further the mini-batch
type of stochasticity.

Finally, for inference problems where the dimensionality
of 0 is very large and therefore it is impractical to opti-
mise over a full scale matrix C, we can consider a diag-
onal matrix in which case the scales can be stored in a
D-dimensional strictly positive vector c. Then, the update
over C' in Algorithm 1 is replaced by

(t=1)
) (t-1) Ologg(0 ) 1
Cd = Cd + Pt ( 89(1 Zd + C(til) ) (9)
d
where d = 1,...,D. Notice that when the initial stan-

dard distribution ¢(z) is fully factorised the above leads
to a fully factorised variational approximation ¢(8|u, c) =
Hle qa(04)t4d, ca). While such approach can have lower
accuracy than using the full scale matrix C, it has the great
advantage that it can scale up to thousands or millions of
parameters. In Section 3.2, we use this scheme for vari-
able selection in logistic regression and we also introduce
a novel variational objective function for sparse inference
following the idea of automatic relevance determination.

In the following two sections we elaborate more on the
properties of DSVI by drawing connections with the Gaus-
sian approximation (Section 2.1) and analysing conver-
gence properties (Section 2.2).

2.1. Connection with the Gaussian approximation

The Gaussian approximation, see (Barber & Bishop, 1998;
Seeger, 1999) and more recently (Opper & Archam-
beau, 2009), assumes a multivariate Gaussian distribution
N (8|, Y) as a variational distribution to approximate the
exact model posterior which leads to the maximisation of
the lower bound

Flu, ) = /N(o\,u, ) log N(’;(Z)E)de. (10)
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The maximisation relies on analytical integration (or in the
worst case in one-dimensional numerical integration) for
computing [ N(0|p, X)log g(0)dl, which subsequently
can allow to tune the variational parameters (p,Y) us-
ing gradient optimization methods (Opper & Archambeau,
2009; Honkela et al., 2011). More recently, Challis & Bar-
ber (2011; 2013) use this framework with the parametrisa-
tion X = CCT and show that when log g() is concave, the
bound is concave w.r.t. (i, C'). The limitation of these ap-
proaches is that they rely on log g(0) having a simple form
so that the integral [ A(0|p, X) log g(0)d# is analytically
tractable. Unfortunately, this constraint excludes many in-
teresting Bayesian inference problems, such as inference
over kernel hyperparameters in Gaussian process models,
inference over weights in neural networks and others.

In contrast, our stochastic variational framework only re-
lies on log g(0) being a differentiable function of 8. If
we specify the distribution ¢(z) to be the standard nor-
mal N\ (z|0, I), the lower bound in (4) becomes the Gaus-
sian approximation bound in (10) with the parametrisation
Y. = CCT. Subsequently, if we apply the DSVI itera-
tion according to Algorithm 1 with the specialization that
z is drawn from N (z|0, I), the algorithm will stochasti-
cally maximise the Gaussian approximation bound. There-
fore, DSVI allows to apply the Gaussian approximation to
a much wider range of models.

A different direction of flexibility in the DSVI framework
is concerned with the choice of the standard distribution
¢(z). Clearly, if we choose a non-Gaussian form we obtain
non-Gaussian variational approximations. For instance,
when this distribution is the standard ¢ with v degrees of
freedom, i.e. ¢(z) = St(z,v,0,I), the variational distri-
bution ¢(0|u, C') becomes the general ¢ distribution with v
degrees of freedom, i.e. ¢(0|p, C) = St(z, v, u, CCT). A
flexible way to define a standard distribution is to assume
a fully factorised form ¢(z) = HdD:1 ¢d(zq) and then se-
lect the univariate marginals, ¢4(z) withd = 1,..., D,
from a family of univariate distributions for which exact
simulation is possible. While in such cases the resulting
q(0]p, C) can be of non-standard form, simulating exact
samples from this distribution is always straightforward
since ) = Cz + p, z ~ ¢(z) is by construction an
independent sample from ¢(@|u, C). In the current exper-
imental study presented in Section 3 we only consider the
DSVI algorithm for stochastic maximisation of the Gaus-
sian approximation bound. We defer the experimentation
with other forms of the ¢(z) distribution for future work.

2.2. Illustrative convergence analysis

In this section, we informally analyse the convergence be-
haviour of DSVI, i.e., its ability to locate a local maximum
of the variational lower bound. We will use an illustra-
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Figure 1. The evolution of the lower bound (optimal value is zero)
obtained by the two stochastic approximation methods employing
two alternative stochastic gradients for fitting a 10-dimensional
Gaussian distribution N'(@|m, I') where m was set to the vector
of twos. The variational mean was initialised to the zero vector.
For each method two realisations are shown (one with small and
one with large learning rate). Blue solid lines correspond to DSVI
while green and red lines to the alternative algorithm.

tive example where ¢(0) is proportional to a multivariate
Gaussian and we will compare our method with an alterna-
tive doubly stochastic approximation approach proposed in
(Paisley et al., 2012). For simplicity next we will be using
the notation f(6) = log g(0).

Recall eq. (7), which gives the gradient over the variational
mean p, that we repeat here for convenience,

/ N (O], )V (6)do, an

where we have also specified the variational distribution
q(8|p, C) to be the Gaussian N'(0|u, ) with & = CCT.
Based on the above, the implied single-sample stochas-
tic approximation of the gradient is V) f (6)), where
0'®) ~ N(6|p,%), which is precisely what DSVI uses.
The question that arises now is whether exists an alterna-
tive way to write the exact gradient over p that can give rise
to a different stochastic gradient and more importantly how
the different stochastic gradients compare with one another
in terms of convergence. In turns out that an alternative
expression for the gradient over p is obtained by directly
differentiating the initial bound in (10) which gives

/ NO )OS (0 pyde.  (12)

This form can be also obtained by the general
method in (Paisley et al., 2012) according to which
the gradient over some variational parameter ¢ in
a variational distribution ¢(@|y) is computed based
on [ f(0)q(0|y)Vy [logq(0]y)] dO which in the case
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q(0l¢) = N (8], X) and ¢p = p reduces to the expression
in (12). This alternative expression suggests as one-sample

stochastic gradient the quantity f(6*))5—! (0(5) - u),

where 89 ~ N (6], X). While sample averages of any
size for both stochastic gradients are unbiased, the second
one suffers from undesirable random walk behaviour when
used for stochastic maximisation of the variational lower
bound. Intuitively, this is because it doesn’t utilise gradient
information from the log joint density f(8) that could al-
low to locate quickly a mode of the posterior distribution.
Next we illustrate this using an example.

Suppose f(68) = log (const x N'(0|m,)), i.e. the joint
density is proportional to a multivariate Gaussian hav-
ing the same covariance matrix with the variational dis-
tribution but different mean m. For further simplifica-
tion let us set ¥ = I. The stochastic gradient used in
DSVI becomes (m — 0*)) while the alternative gradient
is £(68®)(0) — p). Given that we initialise p far away
from m, the first gradient will allow updating @ essen-
tially via a deterministic transient phase where p rapidly
moves towards its optimal value m as shown in Figure 1
(blue solid lines) for two different values of the learning
rate (assumed constant during each run). Once the global
maximum area is reached, DSVI diffuses around the global
maximum with a variance that increases with the learning
rate. In contrast, the alternative gradient exhibits random
walk behaviour even in the transient phase (dashed green
and red lines). Intuitively, this can be explained by the
vector %) — o which determines the direction of move-
ment. Clearly, this vector will point in any direction with
the same probability and what really saves the algorithm
from not diverging is that the random walk is drifted to-
wards the global optimum area due to the penalty imposed
by the scale f(8*).

The random walk behaviour and high variance of the al-
ternative stochastic gradient is well-acknowledged by Pais-
ley et al. (2012) who devised sophisticated control variate
methods to improve convergence. Furthermore, the method
of Paisley et al. (2012) can be applied to a more general
class of inference problems than ours. However, for the
problems our method is applicable to, we believe it should
be preferred due to its efficiency and algorithmic simplicity.

3. Experiments

In this section, we apply the DSVI algorithm to different
types of non-conjugate models. In Section 3.1 we con-
sider standard concave Bayesian logistic regression, while
in Section 3.2 and 3.3 we further elaborate on logistic re-
gression by discussing how to deal with automatic variable
selection and very large datasets. In Section 3.4 we con-
sider DS VI for Gaussian process hyperparameter inference.
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Figure 2. Top: Evolution of the instantaneous bound (see sup-
plementary material for a definition) towards the reference value
provided by Challis & Barber (2013). Bottom: Evolution of the
squared error of the parameters, || — p*[|? + ||C® — C*])2.

3.1. Bayesian logistic regression

We first consider DSVI for standard Bayesian logistic re-
gression. Given a dataset D = {X,,yn})_,, where
X, € RP and y, € {-1,41}, we model the proba-
bility of the outputs conditional on some weights @ as
p(y|0) = TI._, s(yax,8), where s(a) is the logistic
function and x,, = [1 %,]T is the input augmented with
an one to account for the bias. Using this likelihood and a
fixed Gaussian prior on the weights p(0) = N(0, Ip) (with
D=D+ 1), we have fully specified the model and we can
iterate Algorithm 1 for any given dataset. In this case, since
the likelihood is log-concave, the complete functional (4)
becomes concave so that convergence to the optimal solu-
tion is guaranteed. Results using this model are therefore
bound to be identical to those using the method in (Challis
& Barber, 2013), but obtained without the need of numeri-
cal quadrature and using instead simpler stochastic gradient
ascent (which of course will need a larger number of itera-
tions to attain convergence).

For the above simple setting and using the well-known
Pima indians diabetes data set from the UCI repository,
we show on Figure 2 the convergence of our method, us-
ing the result of running the code from (Challis & Barber,
2013) as a reference. For both methods we assumed a full
scale matrix C' so that the complexity per iteration is lin-
ear with the number of data points N and quadratic with
the dimensionality D. Only 16 L-BFGS likelihood eval-
uations are required for the convergence of the reference
method, whereas around 500 evaluations are needed for
DSVI (no stochasticity over the data set was used for this
experiment). However, the actual running time for DSVI
was only around 3 times longer due to its simplicity.
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3.2. Variable selection for logistic regression

In this section, we consider DSVI for variable selection in
large scale Bayesian logistic regression where the input di-
mensionality D can be of order of thousands or millions.
For such cases, it is impractical to learn a correlated vari-
ational distribution with a full scale matrix C' and there-
fore we use a diagonal scale matrix so that the complex-
ity becomes linear with D. As explained in Section 2, in
such cases the variational approximation takes a factorised
form, i.e. ¢(0|p, c) = HdD:1 qa(0a|pa, cq). Next, based on
the former factorised approximation, we introduce a varia-
tional inference algorithm specialised to variable selection.

The starting point of our method is the automatic rele-
vance determination (ARD) idea, as used for instance in
the relevance vector machine (Tipping, 2001). Specifi-
cally, the weights @ are assigned a zero-mean Gaussian
prior p(6) = N (0, A) having a diagonal covariance ma-
trix A, ie. A = diag(¢3,...,¢%) with each (2 repre-
senting the prior variance of 6. We would like to se-
lect the hyperparameters A by maximising an approxima-
tion to the marginal likelihood which, under the variational
framework, reduces to maximising the variational bound
F(p, c, A) w.r.t. both the variational parameters (u, c) and
the hyperparameters A. A standard way to perform this
maximisation is by using variational EM, where we al-
ternate between updating (u, c¢) given A and updating A
given (u,c). However, this scheme can exhibit slow con-
vergence due to the high dependence between the varia-
tional parameters and the hyperparameters. Fortunately, as
we will now show, the optimisation of F(u,c, A) w.r.t.
A can be carried out analytically. This results in an ele-
gant and simplified form for the final variational bound, the
maximisation of which can exhibit faster convergence.

Firstly note that while DSVI is generally applicable to any
non-conjugate model, more efficient algorithms could be
obtained for cases in which the expectation (under the vari-
ational distribution) for some part of the log joint den-
sity can be performed analytically. An example of this is
when the prior p(0) is Gaussian, as in the above logistic
regression model, where the joint density takes the form
g(0) = g(@)N(0,A) with g(@) = p(y|6@) denoting the
likelihood. Then, the variational lower bound is explicitly
written in the form

D
~ 1
Flpc,A) = Eyr) log gle oz + p)] + 5 > logc]
d=1

D

D
1 1 A+u: D
~ 5> log 3 -5 d62“d+5. (13)
d=1 d=1 d

The maximum for each hyperparameter ¢% can be found
analytically by setting the corresponding gradient to zero,
which yields (¢3)* = ¢2+pu32. By substituting these optimal

values back into the lower bound we obtain

D
_ 1 c2
F(p,¢) = By [logglcoz + p)] + 5 Y log 52—
200 catra

(14)

This objective function has a rather simple form and it has
the elegant property that it depends solely on the varia-
tional parameters (u,c). The second term in the sum can
be thought of as regularisation term where each individ-
C2
G
it can allow to shrink a variational mean parameter yg to
zero whenever the corresponding input dimension is some-
how redundant for solving the classification task. It is
straightforward to apply DSVI to maximise the above vari-
ational objective function. All update equations and com-
plete pseudo-code is described by Algorithm 2 in the sup-
plementary material. Next we refer to this algorithm as
DSVI-ARD.

ual term log

encourages sparsity and, for instance,

We applied DSVI-ARD for binary classification in three
cancer-related data sets' that are summarized in Table 1,
in which the input variables are different gene expression
measurements associated with patients and the output vari-
able identify whether the patients have a certain type of
cancer or not; see e.g. (Shevade & Keerthi, 2003). Notice
that in all three datasets the number of training points is
much smaller than the number of input dimensions. Using
DSVI-ARD we solve these binary classification problems
and report predictions in Table 2. For comparison purposes
we also applied standard non-sparse Bayesian logistic re-
gression with a fixed vague Gaussian prior over the param-
eters (denoted by CONCAV in Table 2). These results show
that the ARD model is more consistent in avoiding overfit-
ting, whereas CONCAV is not so consistent since, for in-
stance, it overfits the Leukemia data set.

To visualize the ability to perform variable selection, the
second row of Figure 3 displays the final values of the vari-
ational mean vector p. Clearly, in all three datasets these
mean vectors are highly sparse which shows that the pro-
posed method is effective in identifying the features (genes)
that are relevant for solving each classification task.

Finally, the learning rate sequences and annealing sched-
ule when applying DSVI-ARD to all above problems was
chosen as follows. The learning rate p; is initialised to
po = 0.05/#training examples and scaled every 5000 it-
erations by a factor of 0.95. This learning rate is used to
update g, whereas 0.1p; is used to update c. A total of
10° iterations was considered. The panels in the first row
of Figure 3 show the evolution of averaged values for the
lower bound over the iterations of the algorithm.

! Available from http: //www.csie.ntu.edu.tw/"
cjlin/libsvmtools/datasets/binary.html.
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Table 1. Size and number of features of each cancer data set.

Data set #Train  #Test D
Colon 42 20 2,000
Leukemia 38 34 7,129
Breast 38 4 7,129

Table 2. Train and test errors for the three cancer datasets and for
each method: CONCAV is the original DSVI algorithm with a
fixed prior, whereas ARD is the feature-selection version.

Problem Train Error  Test Error
Colon (ARD) 0/42 1/20
Colon (CONCAV) 0/42 0/20
Leukemia (ARD) 0/38 3/34
Leukemia (CONCAV) 0/38 12/34
Breast (ARD) 0/38 2/4
Breast (CONCAV) 0/38 0/4

Table 3. Size and sparsity level of each large-scale data set.

Data set #Train #Test D #Nonzeros
a%a 32,561 16,281 123 451,592
rcvl 20,242 677,399 47,236 49,556,258
Epsilon 400,000 100,000 2,000 800,000,000

Table 4. Test error rates for DSVI-ARD and ¢ -logistic regression
on three large-scale data sets.

Data set DSVIARD Log. Reg. A
aa 0.1507 0.1500 2
rcvl 0.0414 0.0420 4
Epsilon 0.1014 0.1011 0.5

Table 5. Performance measures of GP regression where hyperpa-
rameters are selected by ML-1I, DSVI or MCMC.

Data set ML-II DSVI MCMC
Boston (smse)  0.0743  0.0709  0.0699
(nlpd) 0.1783  0.1425  0.1317
Bodyfat (smse)  0.1992  0.0726  0.0726
(nlpd)  -0.1284 -2.0750 -2.0746
Pendulum (smse) 0.2727  0.2807  0.2801
(nlpd) 0.4537  0.4465  0.4462

3.3. Large-scale data sets

In order to demonstrate the scalability of the proposed
method, we run it on three well-known large-scale binary
classification datasets a9a, rcvl, and Epsilon, whose
details are listed on Table 3. Data set a9a is derived from
“Adult” in UCI repository, rcv1 is an archive of manually
categorised news stories from Reuters (we use the original
train/test split), and Epsilon is an artificial data set from
PASCAL’s large-scale learning challenge 2008.

We use again the Bayesian logistic regression model with
variable selection and we applied the DSVI-ARD algo-
rithm described previously. For all problems, mini-batches
of size 500 are used, so this process does not ever re-
quire the whole data set to be loaded in memory. We
contrast our results with standard ¢;-logistic regression,
which exactly minimises the convex functional L(w) =
w1 — A" log s(yax,) w). Both methods are run on
the exact same splits. The value of )\ was selected using 5-
fold cross-validation. Results are reported on Table 4 and
show the compromises made between both approaches.

The proposed approach scales well to very large data sets
but it does not outperform ¢; -logistic regression in these ex-
amples. This is expected, since the number of data points
is so high that there is little benefit from using a Bayesian
approach here. Note, however, the slight advantage ob-
tained for rcv1, where there are a huge number of dimen-
sions. Another benefit of DSVI-ARD is the low memory
requirements (we needed a 32GB RAM computer to run
the /1-logistic regression, whereas a 4GB one was enough
for DSVI-ARD). In contrast, logistic regression was more
than 100 times faster in achieving convergence (using the
highly optimised LIBLINEAR software).

3.4. Gaussian process hyperparameters

Gaussian processes (GPs) are non-parametric Bayesian
models widely used to solve regression tasks. In a typi-
cal setting, a regression data set D = {x,,,y, }N_; with
X, € RP and y,, € R is modelled as y,, = f(x,) + €n,
where €, ~ N(0,0%) and f(x) ~ GP(0, k(x,x';0)), for

some kernel hyperparameters 6 and noise variance o2.

Point estimates for the hyperparameters are typically ob-
tained by optimising the marginal likelihood of the GP
using some gradient ascent procedure (Rasmussen &
Williams, 2006). Here, we suggest to replace this pro-
cedure with stochastic gradient ascent optimisation of the
lower bound that provides a posterior distribution over the
hyperparameters. While the stochastic nature of the pro-
posed method will probably imply that more marginal like-
lihood evaluations are required for convergence, this addi-
tional computational cost will make the model more resis-
tant to overfitting and provide a posterior over the hyperpa-
rameters at a fraction of the cost of full MCMC.
1 ED7 (md—;Q)z

Using a GP with kernel k(x,x’) = 0']206 - B
we place vague independent normal priors over the hyper-
parameters in log space and compute the posterior and pre-
dictive densities for three data sets: Boston, Bodyfat,
and Pendulum. Obviously, for this model, no stochastic-
ity over the data set is used. Boston is a UCI data set re-
lated to housing values in Boston, Bodyfat requires pre-
dicting the percentage of body fat from several body mea-
surements and in Pendulum the change in angular veloc-
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Figure 3. Top: Rolling-window average (see supplementary material) of the instantaneous lower bound values. Bottom: Final value of
the approximate mean vectors . First column corresponds to Colon, second to Leukemia and third to Breast dataset.
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Figure 4. Marginal variational Gaussian distributions for some hyperparameters in Boston dataset (shown as dashed red lines). The

black solid lines show the ground-truth empirical estimates for these marginals obtained by MCMC.

ity of a simulated mechanical pendulum must be predicted.

Figure 4 displays variational posterior marginal distri-
butions for three of the hyperparameters in the Boston
housing dataset together with the corresponding empiri-
cal marginals obtained by long MCMC runs. Clearly, the
variational marginals match very closely the MCMC esti-
mates; see the supplementary material for a complete set of
such figures for all hyperparameters in all three regression
datasets. Furthermore, negative log-predictive densities
(nlpd) as well as standardised mean square errors (smse) in
test data are shown in Table 5 for maximum marginal likeli-
hood model selection (ML-II, the standard for GPs), DSVI
and MCMC. As the table shows, ML-II, which is the most
widely used method for hyperparameter selection in GPs,
overfits the Bodyfat data set. DSVI and MCMC do not
show this problem, yielding much better test performance.
To provide an intuition of the computational effort associ-
ated to each of these methods, note that on these experi-
ments, on average ML-II took 40 seconds, DSVI 30 min-
utes and MCMC 20 hours. Further details on all above GP

regression experiments, including the learning rates used,
are given in the supplementary material.

4. Discussion and future work

We have presented a stochastic variational inference algo-
rithm that utilises gradients of the joint probability den-
sity and it is based on double stochasticity (by both sub-
sampling training data and simulating from the varia-
tional density) to deal with non-conjugate models and big
datasets. We have shown that the method can be applied
to a number of diverge cases achieving competitive re-
sults. Further work should be concerned with speeding the
stochastic approximation algorithm as well as fitting more
complex variational distributions such as mixture models.
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