
Variational Inference for Gaussian and
Determinantal Point Processes

Michalis K. Titsias
Department of Informatics,

Athens University of Economics and Business, Greece

Motivation

The general setting: We are interested in applying variational
inference to Bayesian non-parametric models where the number of
parameters grows with the number of data

The challenge: How can we variationally approximate/represent
infinite posteriors?

In this talk: We will present a variational method that has been
developed for Gaussian process models and then extend it to
determinantal point processes

Motivation

The general setting: We are interested in applying variational
inference to Bayesian non-parametric models where the number of
parameters grows with the number of data

The challenge: How can we variationally approximate/represent
infinite posteriors?

In this talk: We will present a variational method that has been
developed for Gaussian process models and then extend it to
determinantal point processes

Motivation

The general setting: We are interested in applying variational
inference to Bayesian non-parametric models where the number of
parameters grows with the number of data

The challenge: How can we variationally approximate/represent
infinite posteriors?

In this talk: We will present a variational method that has been
developed for Gaussian process models and then extend it to
determinantal point processes

Gaussian process regression

Inputs X = (x1, . . . , xn) and outputs y = (y1, . . . , yn) such that

yi = f (xi) + εi , εi ∼ N (0, σ2)

Place GP prior on latent function f (x):

f (x) ∼ GP(0, k(x, x′)),

Given that we have n data our current “marginal model” is

p(y|f)p(f) = N (y|f, σ2I)N (f|0,Kff), [Kff]ij = k(xi , xj)

where f = (f1, . . . , fn) are the parameters

Gaussian process regression

Inputs X = (x1, . . . , xn) and outputs y = (y1, . . . , yn) such that

yi = f (xi) + εi , εi ∼ N (0, σ2)

Place GP prior on latent function f (x):

f (x) ∼ GP(0, k(x, x′)),

Given that we have n data our current “marginal model” is

p(y|f)p(f) = N (y|f, σ2I)N (f|0,Kff), [Kff]ij = k(xi , xj)

where f = (f1, . . . , fn) are the parameters

Gaussian process regression

Inputs X = (x1, . . . , xn) and outputs y = (y1, . . . , yn) such that

yi = f (xi) + εi , εi ∼ N (0, σ2)

Place GP prior on latent function f (x):

f (x) ∼ GP(0, k(x, x′)),

Given that we have n data our current “marginal model” is

p(y|f)p(f) = N (y|f, σ2I)N (f|0,Kff), [Kff]ij = k(xi , xj)

where f = (f1, . . . , fn) are the parameters

Gaussian process regression

and now the problem appears: as we keep collecting more data
the size of f = (f1, f2, f3, . . .) increases and the kernel matrix gets
bigger and bigger

Kff =


k(x1, x1) k(x1, x2) k(x1, x3) . . .
k(x2, x1) k(x2, x2) k(x2, x3) . . .
k(x3, x1) k(x3, x2) k(x3, x3) . . .

...
...

...
. . .



Space scales as O(n2) and time as O(n3)

Thus GP computations, e.g. learning by maximizing the marginal
likelihood

p(y) =

∫
p(y|f)p(f)df = N (y|0,Kff + σ2I)

are not feasible for very large n

Gaussian process regression

and now the problem appears: as we keep collecting more data
the size of f = (f1, f2, f3, . . .) increases and the kernel matrix gets
bigger and bigger

Kff =


k(x1, x1) k(x1, x2) k(x1, x3) . . .
k(x2, x1) k(x2, x2) k(x2, x3) . . .
k(x3, x1) k(x3, x2) k(x3, x3) . . .

...
...

...
. . .


Space scales as O(n2) and time as O(n3)

Thus GP computations, e.g. learning by maximizing the marginal
likelihood

p(y) =

∫
p(y|f)p(f)df = N (y|0,Kff + σ2I)

are not feasible for very large n

Gaussian process regression

and now the problem appears: as we keep collecting more data
the size of f = (f1, f2, f3, . . .) increases and the kernel matrix gets
bigger and bigger

Kff =


k(x1, x1) k(x1, x2) k(x1, x3) . . .
k(x2, x1) k(x2, x2) k(x2, x3) . . .
k(x3, x1) k(x3, x2) k(x3, x3) . . .

...
...

...
. . .


Space scales as O(n2) and time as O(n3)

Thus GP computations, e.g. learning by maximizing the marginal
likelihood

p(y) =

∫
p(y|f)p(f)df = N (y|0,Kff + σ2I)

are not feasible for very large n

Inducing variables

The problem is that f grows as we collect more data

Idea: Summarize/replace f by a smaller parameter vector u

The size of u must be user-controllable based on current
computational resources

I it could grow if the computational capacity increase in future

Obviously how u is going to be defined and optimized is crucial

Inducing variables

The problem is that f grows as we collect more data

Idea: Summarize/replace f by a smaller parameter vector u

The size of u must be user-controllable based on current
computational resources

I it could grow if the computational capacity increase in future

Obviously how u is going to be defined and optimized is crucial

Inducing variables

The problem is that f grows as we collect more data

Idea: Summarize/replace f by a smaller parameter vector u

The size of u must be user-controllable based on current
computational resources

I it could grow if the computational capacity increase in future

Obviously how u is going to be defined and optimized is crucial

Inducing variables

The problem is that f grows as we collect more data

Idea: Summarize/replace f by a smaller parameter vector u

The size of u must be user-controllable based on current
computational resources

I it could grow if the computational capacity increase in future

Obviously how u is going to be defined and optimized is crucial

Inducing variables

A realization of a full (infinite) GP function/sample path
Summarize with a discrete set of function values u = (u1, . . . , um)
and some uncertainty for the intermediate points

Inducing variables

Inducing variables u form a vector of user-controllable size that
augments the GP prior:

p(f,u) = N

([
f
u

] ∣∣∣∣∣0,
[

Kff Kfu

Kuf Kuu

])
, Kfu = E[fuT], Kuu = E[uuT]

u can be:

I a subset of f
I values of f (x) at arbitrary “pseudo-inputs”
I arbitrary linear functionals, e.g. u = zi f (xi) + zj f (xj)

The augmentation with u adds some parameters Z

I indices that specify the subset in f, pseudo-inputs, weights etc
I Kfu and Kuu depend on those parameters

Inducing variables

Inducing variables u form a vector of user-controllable size that
augments the GP prior:

p(f,u) = N

([
f
u

] ∣∣∣∣∣0,
[

Kff Kfu

Kuf Kuu

])
, Kfu = E[fuT], Kuu = E[uuT]

u can be:

I a subset of f
I values of f (x) at arbitrary “pseudo-inputs”
I arbitrary linear functionals, e.g. u = zi f (xi) + zj f (xj)

The augmentation with u adds some parameters Z

I indices that specify the subset in f, pseudo-inputs, weights etc
I Kfu and Kuu depend on those parameters

Inducing variables

Inducing variables u form a vector of user-controllable size that
augments the GP prior:

p(f,u) = N

([
f
u

] ∣∣∣∣∣0,
[

Kff Kfu

Kuf Kuu

])
, Kfu = E[fuT], Kuu = E[uuT]

u can be:

I a subset of f
I values of f (x) at arbitrary “pseudo-inputs”
I arbitrary linear functionals, e.g. u = zi f (xi) + zj f (xj)

The augmentation with u adds some parameters Z

I indices that specify the subset in f, pseudo-inputs, weights etc
I Kfu and Kuu depend on those parameters

Inducing variables

We have

p(f,u) = N

([
f
u

] ∣∣∣∣∣0,
[

Kff Kfu

Kuf Kuu

])
= p(f|u)p(u)

where

p(f|u) = N (f|KfuK
−1
uu u,Kff −KfuK

−1
uu Kuf) conditional GP prior

p(u) = N (u|0,Kuu) marginal over u

We can marginalize out u and recover back p(f):∫
p(f|u)p(u)du = p(f) consistency

An efficient construction of u and selection of values for Z should
be such that u correlates strongly with f

I i.e. p(f|u) is sharply picked

Inducing variables

We have

p(f,u) = N

([
f
u

] ∣∣∣∣∣0,
[

Kff Kfu

Kuf Kuu

])
= p(f|u)p(u)

where

p(f|u) = N (f|KfuK
−1
uu u,Kff −KfuK

−1
uu Kuf) conditional GP prior

p(u) = N (u|0,Kuu) marginal over u

We can marginalize out u and recover back p(f):∫
p(f|u)p(u)du = p(f) consistency

An efficient construction of u and selection of values for Z should
be such that u correlates strongly with f

I i.e. p(f|u) is sharply picked

Inducing variables

We have

p(f,u) = N

([
f
u

] ∣∣∣∣∣0,
[

Kff Kfu

Kuf Kuu

])
= p(f|u)p(u)

where

p(f|u) = N (f|KfuK
−1
uu u,Kff −KfuK

−1
uu Kuf) conditional GP prior

p(u) = N (u|0,Kuu) marginal over u

We can marginalize out u and recover back p(f):∫
p(f|u)p(u)du = p(f) consistency

An efficient construction of u and selection of values for Z should
be such that u correlates strongly with f

I i.e. p(f|u) is sharply picked

Inducing variables

We have

p(f,u) = N

([
f
u

] ∣∣∣∣∣0,
[

Kff Kfu

Kuf Kuu

])
= p(f|u)p(u)

where

p(f|u) = N (f|KfuK
−1
uu u,Kff −KfuK

−1
uu Kuf) conditional GP prior

p(u) = N (u|0,Kuu) marginal over u

We can marginalize out u and recover back p(f):∫
p(f|u)p(u)du = p(f) consistency

An efficient construction of u and selection of values for Z should
be such that u correlates strongly with f

I i.e. p(f|u) is sharply picked

Inducing variables

A realized value for f
Realized values for the inducing variables u = (u1, . . . , um), ui = f (zi)
The augmentation parameters are the inducing inputs Z = (z1, . . . , zm)
Conditional prior p(f|u)

Inducing variables

The whole purpose of adding u is to help us obtain an
approximation to our Bayesian non-parametric model (without
changing its non-parametric nature... as will be discussed
shortly) that will scale better computationally

The big question now is how do we “turn around” u in order to
make it the basis of our approximation? Further, how do we learn
the augmentation parameters Z?

Inducing variables

The whole purpose of adding u is to help us obtain an
approximation to our Bayesian non-parametric model (without
changing its non-parametric nature... as will be discussed
shortly) that will scale better computationally

The big question now is how do we “turn around” u in order to
make it the basis of our approximation? Further, how do we learn
the augmentation parameters Z?

Variational learning of inducing variables

Augmented joint

p(y, f,u) = p(y|f)p(f|u)p(u)

Augmented exact posterior

p(f,u|y) = p(f|u, y)p(u|y)

Marginal likelihood is invariant to the augmentation parameters Z

p(y) =

∫
p(y|f)p(f|u)p(u)dfdu

and the marginal posterior p(f|y) is also invariant to Z

I I.e. Z is not model parameter
I ⇒ we can turn it into variational parameter by lower

bounding

Variational learning of inducing variables

Augmented joint

p(y, f,u) = p(y|f)p(f|u)p(u)

Augmented exact posterior

p(f,u|y) = p(f|u, y)p(u|y)

Marginal likelihood is invariant to the augmentation parameters Z

p(y) =

∫
p(y|f)p(f|u)p(u)dfdu

and the marginal posterior p(f|y) is also invariant to Z

I I.e. Z is not model parameter
I ⇒ we can turn it into variational parameter by lower

bounding

Variational learning of inducing variables

Augmented joint

p(y, f,u) = p(y|f)p(f|u)p(u)

Augmented exact posterior

p(f,u|y) = p(f|u, y)p(u|y)

Marginal likelihood is invariant to the augmentation parameters Z

p(y) =

∫
p(y|f)p(f|u)p(u)dfdu

and the marginal posterior p(f|y) is also invariant to Z

I I.e. Z is not model parameter
I ⇒ we can turn it into variational parameter by lower

bounding

Variational learning of inducing variables

Joint

p(y, f,u) = p(y|f)p(f|u)p(u)

Exact posterior distribution

p(f,u|y) = p(f|u, y)p(u|y)

Variational distribution

q(f,u) = p(f|u)q(u)

This choice encourages u to become approximate sufficient statistic

if p(f|u) ≈ p(f|u, y), then u summarizes well the data

Variational learning of inducing variables

Joint

p(y, f,u) = p(y|f)p(f|u)p(u)

Exact posterior distribution

p(f,u|y) = p(f|u, y)p(u|y)

Variational distribution

q(f,u) = p(f|u)q(u)

This choice encourages u to become approximate sufficient statistic

if p(f|u) ≈ p(f|u, y), then u summarizes well the data

Variational learning of inducing variables

Joint

p(y, f,u) = p(y|f)p(f|u)p(u)

Exact posterior distribution

p(f,u|y) = p(f|u, y)p(u|y)

Variational distribution

q(f,u) = p(f|u)q(u)

This choice encourages u to become approximate sufficient statistic

if p(f|u) ≈ p(f|u, y), then u summarizes well the data

Variational learning of inducing variables

Joint

p(y, f,u) = p(y|f)p(f|u)p(u)

Exact posterior distribution

p(f,u|y) = p(f|u, y)p(u|y)

Variational distribution

q(f,u) = p(f|u)q(u)

This choice encourages u to become approximate sufficient statistic

if p(f|u) ≈ p(f|u, y), then u summarizes well the data

Variational learning of inducing variables

Minimize KL [q(f,u)||p(f,u|y)] or equivalently maximize the bound
on the log marginal likelihood

log p(y) = log

∫
p(y|f)p(f|u)p(u)dfdu

Variational learning of inducing variables

log p(y) = log

∫
p(y|f)p(f|u)p(u)dfdu

log p(y) = log

∫
q(f,u)

q(f,u)
p(y|f)p(f|u)p(u)dfdu

log p(y) ≥
∫

q(f,u) log
p(y|f)p(f|u)p(u)

q(f,u)
dfdu

Substitute q(f,u) = p(f|u)q(u):

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(f|u)p(u)

q(u)p(f|u)
dfdu

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(u)

q(u)
dfdu

Variational learning of inducing variables

log p(y) = log

∫
p(y|f)p(f|u)p(u)dfdu

log p(y) = log

∫
q(f,u)

q(f,u)
p(y|f)p(f|u)p(u)dfdu

log p(y) ≥
∫

q(f,u) log
p(y|f)p(f|u)p(u)

q(f,u)
dfdu

Substitute q(f,u) = p(f|u)q(u):

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(f|u)p(u)

q(u)p(f|u)
dfdu

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(u)

q(u)
dfdu

Variational learning of inducing variables

log p(y) = log

∫
p(y|f)p(f|u)p(u)dfdu

log p(y) = log

∫
q(f,u)

q(f,u)
p(y|f)p(f|u)p(u)dfdu

log p(y) ≥
∫

q(f,u) log
p(y|f)p(f|u)p(u)

q(f,u)
dfdu

Substitute q(f,u) = p(f|u)q(u):

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(f|u)p(u)

q(u)p(f|u)
dfdu

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(u)

q(u)
dfdu

Variational learning of inducing variables

log p(y) = log

∫
p(y|f)p(f|u)p(u)dfdu

log p(y) = log

∫
q(f,u)

q(f,u)
p(y|f)p(f|u)p(u)dfdu

log p(y) ≥
∫

q(f,u) log
p(y|f)p(f|u)p(u)

q(f,u)
dfdu

Substitute q(f,u) = p(f|u)q(u):

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(f|u)p(u)

q(u)p(f|u)
dfdu

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(u)

q(u)
dfdu

Variational learning of inducing variables

log p(y) = log

∫
p(y|f)p(f|u)p(u)dfdu

log p(y) = log

∫
q(f,u)

q(f,u)
p(y|f)p(f|u)p(u)dfdu

log p(y) ≥
∫

q(f,u) log
p(y|f)p(f|u)p(u)

q(f,u)
dfdu

Substitute q(f,u) = p(f|u)q(u):

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(f|u)p(u)

q(u)p(f|u)
dfdu

log p(y) ≥
∫

q(u)p(f|u) log
p(y|f)p(u)

q(u)
dfdu

Variational learning of inducing variables

log p(y) ≥
∫

q(u)

[∫
p(f|u) log p(y|f)df + log

p(u)

q(u)

]
du

log p(y) ≥
∫

q(u)

[
log e

∫
p(f|u) log p(y|f)df + log

p(u)

q(u)

]
du

log p(y) ≥
∫

q(u) log
e
∫

p(f|u) log p(y|f)dfp(u)

q(u)
du

Maximize over q(u):

log p(y) ≥ log

∫
e
∫

p(f|u) log p(y|f)dfp(u)du

Variational learning of inducing variables

log p(y) ≥
∫

q(u)

[∫
p(f|u) log p(y|f)df + log

p(u)

q(u)

]
du

log p(y) ≥
∫

q(u)

[
log e

∫
p(f|u) log p(y|f)df + log

p(u)

q(u)

]
du

log p(y) ≥
∫

q(u) log
e
∫

p(f|u) log p(y|f)dfp(u)

q(u)
du

Maximize over q(u):

log p(y) ≥ log

∫
e
∫

p(f|u) log p(y|f)dfp(u)du

Variational learning of inducing variables

log p(y) ≥
∫

q(u)

[∫
p(f|u) log p(y|f)df + log

p(u)

q(u)

]
du

log p(y) ≥
∫

q(u)

[
log e

∫
p(f|u) log p(y|f)df + log

p(u)

q(u)

]
du

log p(y) ≥
∫

q(u) log
e
∫

p(f|u) log p(y|f)dfp(u)

q(u)
du

Maximize over q(u):

log p(y) ≥ log

∫
e
∫

p(f|u) log p(y|f)dfp(u)du

Variational learning of inducing variables

log p(y) ≥
∫

q(u)

[∫
p(f|u) log p(y|f)df + log

p(u)

q(u)

]
du

log p(y) ≥
∫

q(u)

[
log e

∫
p(f|u) log p(y|f)df + log

p(u)

q(u)

]
du

log p(y) ≥
∫

q(u) log
e
∫

p(f|u) log p(y|f)dfp(u)

q(u)
du

Maximize over q(u):

log p(y) ≥ log

∫
e
∫

p(f|u) log p(y|f)dfp(u)du

Variational learning of inducing variables

Theorem 1 (bound).

For arbitrary GP model:

p(y) ≥
∫

G (y,u)p(u)du, G (y,u) = e
∫

p(f|u) log p(y|f)df

For GP regression:

N (y|0,Kff +σ2I) ≥ N (y|0,KfuK
−1
uu Kuf +σ2I)e−

1
2σ2 tr(Kff−KfuK

−1
uu Kuf)

Theorem 2 (monotonicity property). If we have inducing
variables u and add an extra ui the bound can only increase∫

G (y,u, ui)p(u, ui)du ≥
∫

G (y,u)p(u)du

Computation of the bound and the approximate GP prediction
scale as O(nm2) where m is the number of inducing variables

Variational learning of inducing variables

Theorem 1 (bound).

For arbitrary GP model:

p(y) ≥
∫

G (y,u)p(u)du, G (y,u) = e
∫

p(f|u) log p(y|f)df

For GP regression:

N (y|0,Kff +σ2I) ≥ N (y|0,KfuK
−1
uu Kuf +σ2I)e−

1
2σ2 tr(Kff−KfuK

−1
uu Kuf)

Theorem 2 (monotonicity property). If we have inducing
variables u and add an extra ui the bound can only increase∫

G (y,u, ui)p(u, ui)du ≥
∫

G (y,u)p(u)du

Computation of the bound and the approximate GP prediction
scale as O(nm2) where m is the number of inducing variables

Variational learning of inducing variables

Theorem 1 (bound).

For arbitrary GP model:

p(y) ≥
∫

G (y,u)p(u)du, G (y,u) = e
∫

p(f|u) log p(y|f)df

For GP regression:

N (y|0,Kff +σ2I) ≥ N (y|0,KfuK
−1
uu Kuf +σ2I)e−

1
2σ2 tr(Kff−KfuK

−1
uu Kuf)

Theorem 2 (monotonicity property). If we have inducing
variables u and add an extra ui the bound can only increase∫

G (y,u, ui)p(u, ui)du ≥
∫

G (y,u)p(u)du

Computation of the bound and the approximate GP prediction
scale as O(nm2) where m is the number of inducing variables

Variational learning of inducing variables

For GP regression the bound has an interesting form:

F(Z ,θ) = logN (y|0,KfuK
−1
uu Kuf + σ2I)− 1

2σ2
tr
(
Kff −KfuK

−1
uu Kuf

)

The first term is an approximation to the log marginal likelihood
(proposed by M. Seeger for learning kernel hyperparameters θ)

The second term is an extra regularization term which depends on
the total variance of the conditional prior p(f|u):

tr
(
Kff −KfuK

−1
uu Kuf

)
We maximize F(Z ,θ) over Z and kernel hyperparameters θ:

I Z is a variational parameter

Variational learning of inducing variables

For GP regression the bound has an interesting form:

F(Z ,θ) = logN (y|0,KfuK
−1
uu Kuf + σ2I)− 1

2σ2
tr
(
Kff −KfuK

−1
uu Kuf

)
The first term is an approximation to the log marginal likelihood
(proposed by M. Seeger for learning kernel hyperparameters θ)

The second term is an extra regularization term which depends on
the total variance of the conditional prior p(f|u):

tr
(
Kff −KfuK

−1
uu Kuf

)
We maximize F(Z ,θ) over Z and kernel hyperparameters θ:

I Z is a variational parameter

Variational learning of inducing variables

For GP regression the bound has an interesting form:

F(Z ,θ) = logN (y|0,KfuK
−1
uu Kuf + σ2I)− 1

2σ2
tr
(
Kff −KfuK

−1
uu Kuf

)
The first term is an approximation to the log marginal likelihood
(proposed by M. Seeger for learning kernel hyperparameters θ)

The second term is an extra regularization term which depends on
the total variance of the conditional prior p(f|u):

tr
(
Kff −KfuK

−1
uu Kuf

)

We maximize F(Z ,θ) over Z and kernel hyperparameters θ:

I Z is a variational parameter

Variational learning of inducing variables

For GP regression the bound has an interesting form:

F(Z ,θ) = logN (y|0,KfuK
−1
uu Kuf + σ2I)− 1

2σ2
tr
(
Kff −KfuK

−1
uu Kuf

)
The first term is an approximation to the log marginal likelihood
(proposed by M. Seeger for learning kernel hyperparameters θ)

The second term is an extra regularization term which depends on
the total variance of the conditional prior p(f|u):

tr
(
Kff −KfuK

−1
uu Kuf

)
We maximize F(Z ,θ) over Z and kernel hyperparameters θ:

I Z is a variational parameter

Variational learning of inducing variables

The approximate posterior/predictive Gaussian process:

q(f∗) =

∫
p(f∗|f,u)q(f,u)dfdu

=

∫
p(f∗|f,u)p(f|u)q(u)dfdu

=

∫
p(f∗|u)q(u)du

where we used the consistency
∫
p(f∗|f,u)p(f|u)df = p(f|u)

There is a very important thing to be said here:

I This is not a discretized, truncated or low rank approximation
(it is full rank and NOT low rank as many people believe)

I This is because the conditional GP p(f∗|u) is an infinite object

The approximation can be thought of been restricted not to
explore freely the information in the training data. But it
maintains fully the non-parametric nature of the model

Variational learning of inducing variables

The approximate posterior/predictive Gaussian process:

q(f∗) =

∫
p(f∗|f,u)q(f,u)dfdu

=

∫
p(f∗|f,u)p(f|u)q(u)dfdu

=

∫
p(f∗|u)q(u)du

where we used the consistency
∫
p(f∗|f,u)p(f|u)df = p(f|u)

There is a very important thing to be said here:

I This is not a discretized, truncated or low rank approximation
(it is full rank and NOT low rank as many people believe)

I This is because the conditional GP p(f∗|u) is an infinite object

The approximation can be thought of been restricted not to
explore freely the information in the training data. But it
maintains fully the non-parametric nature of the model

Variational learning of inducing variables

The approximate posterior/predictive Gaussian process:

q(f∗) =

∫
p(f∗|f,u)q(f,u)dfdu

=

∫
p(f∗|f,u)p(f|u)q(u)dfdu

=

∫
p(f∗|u)q(u)du

where we used the consistency
∫
p(f∗|f,u)p(f|u)df = p(f|u)

There is a very important thing to be said here:

I This is not a discretized, truncated or low rank approximation
(it is full rank and NOT low rank as many people believe)

I This is because the conditional GP p(f∗|u) is an infinite object

The approximation can be thought of been restricted not to
explore freely the information in the training data. But it
maintains fully the non-parametric nature of the model

Variational learning of inducing variables

−2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Full GP that scales as O(n3) = O(2003)
Variational approximation that scales as O(nm2) = O(200× 152) at
initialization

I The crosses (+) are the initial values of the inducing inputs Z

Variational learning of inducing variables

−2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Full GP that scales as O(n3) = O(2003)
Variational approximation that scales as O(nm2) = O(200× 152) after
having maximized the bound

Variational learning of inducing variables

0 50 100 150 200 250 300 350
0

50

100

150

200

250

Initial locations of the inducing inputs Z

Variational learning of inducing variables

0 50 100 150 200 250 300 350
0

50

100

150

200

250

Locations of the inducing inputs after having maximized the bound

Variational learning of inducing variables

0 50 100 150 200 250 300 350 400
−12000

−10000

−8000

−6000

−4000

−2000

0

L
o
w

e
r

b
o
u
n
d

Number of inducing variables

Without opt. Z,

With opt. Z

Exact MargL

Maximization wrt the inducing inputs Z improves the approximation

(The example is based on the Boston housing data and Z is initialized to a

random subset of training inputs)

Variational learning of inducing variables

0 50 100 150 200 250 300 350 400
−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

A
p

p
ro

x
im

a
ti
o

n
 t

o
 l
o

g
 m

a
rg

.
lik

.

Number of inducing variables

Lower

Upper

Exact

If the bound flattens as we add more inducing variables we typically have
reached full GP

To further assess the approximation we can consult an upper bound

p(y) ≤ 1

(2π)
n
2 |KfuK

−1
uu Kuf + σ2I | 12

e−
1
2 y

T (KfuK
−1
uu Kuf +c+σ2I)−1

y

where c = tr
(
Kff −KfuK

−1
uu Kuf

)

Variational learning of inducing variables

When the bound becomes tight?

F(Z ,θ) = logN (y|0,KfuK
−1
uu Kuf +σ2I)− 1

2σ2
tr
(
Kff −KfuK

−1
uu Kuf

)

When the trace term is zero the bound becomes tight, i.e.

If tr
(
Kff −KfuK

−1
uu Kuf

)
= 0 ⇒ Kff = KfuK

−1
uu Kuf , F = log p(y)

This can be always achieved if we set Z = X (so that m = n)

Question: what is the best we can do if we use m < n inducing
variables?

Variational learning of inducing variables

When the bound becomes tight?

F(Z ,θ) = logN (y|0,KfuK
−1
uu Kuf +σ2I)− 1

2σ2
tr
(
Kff −KfuK

−1
uu Kuf

)
When the trace term is zero the bound becomes tight, i.e.

If tr
(
Kff −KfuK

−1
uu Kuf

)
= 0 ⇒ Kff = KfuK

−1
uu Kuf , F = log p(y)

This can be always achieved if we set Z = X (so that m = n)

Question: what is the best we can do if we use m < n inducing
variables?

Variational learning of inducing variables

When the bound becomes tight?

F(Z ,θ) = logN (y|0,KfuK
−1
uu Kuf +σ2I)− 1

2σ2
tr
(
Kff −KfuK

−1
uu Kuf

)
When the trace term is zero the bound becomes tight, i.e.

If tr
(
Kff −KfuK

−1
uu Kuf

)
= 0 ⇒ Kff = KfuK

−1
uu Kuf , F = log p(y)

This can be always achieved if we set Z = X (so that m = n)

Question: what is the best we can do if we use m < n inducing
variables?

Variational learning of inducing variables

When the bound becomes tight?

F(Z ,θ) = logN (y|0,KfuK
−1
uu Kuf +σ2I)− 1

2σ2
tr
(
Kff −KfuK

−1
uu Kuf

)
When the trace term is zero the bound becomes tight, i.e.

If tr
(
Kff −KfuK

−1
uu Kuf

)
= 0 ⇒ Kff = KfuK

−1
uu Kuf , F = log p(y)

This can be always achieved if we set Z = X (so that m = n)

Question: what is the best we can do if we use m < n inducing
variables?

Variational learning of inducing variables

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

T
ra

c
e
 t
e
rm

Number of inducing variables

Without opt. Z

With opt. Z

Sum of residual eigenvalues

It holds that tr
(
Kff −KfuK

−1
uu Kuf

)
≥
∑n

i=m+1 λi

where λ1 ≥ λ2 ≥ ≥ λn are the eigenvalues of Kff

Some history

Early work (that set the foundation of these approximations) is:
Csato and Opper (2002); Seeger (2003); Seeger, Williams and
Lawrence (2003)

Snelson and Ghahramani (2006) (proposed pseudo-inputs and
FITC) and the related unification of methods by Quinonero-Candela
and Rasmussen (2005)

Titsias (2009) (derived the bound in regression and treated inducing
variables as variational parameters). A continuation of this in
Titsias and Lawrence (2010) extended the framework to
variationally integrate out inputs in GP functions

Hensman, Fusi and Lawrence (2013) (combined the framework with
stochastic data sub-sampling variational inference)

Some history

Early work (that set the foundation of these approximations) is:
Csato and Opper (2002); Seeger (2003); Seeger, Williams and
Lawrence (2003)

Snelson and Ghahramani (2006) (proposed pseudo-inputs and
FITC) and the related unification of methods by Quinonero-Candela
and Rasmussen (2005)

Titsias (2009) (derived the bound in regression and treated inducing
variables as variational parameters). A continuation of this in
Titsias and Lawrence (2010) extended the framework to
variationally integrate out inputs in GP functions

Hensman, Fusi and Lawrence (2013) (combined the framework with
stochastic data sub-sampling variational inference)

Some history

Early work (that set the foundation of these approximations) is:
Csato and Opper (2002); Seeger (2003); Seeger, Williams and
Lawrence (2003)

Snelson and Ghahramani (2006) (proposed pseudo-inputs and
FITC) and the related unification of methods by Quinonero-Candela
and Rasmussen (2005)

Titsias (2009) (derived the bound in regression and treated inducing
variables as variational parameters). A continuation of this in
Titsias and Lawrence (2010) extended the framework to
variationally integrate out inputs in GP functions

Hensman, Fusi and Lawrence (2013) (combined the framework with
stochastic data sub-sampling variational inference)

Some history

Early work (that set the foundation of these approximations) is:
Csato and Opper (2002); Seeger (2003); Seeger, Williams and
Lawrence (2003)

Snelson and Ghahramani (2006) (proposed pseudo-inputs and
FITC) and the related unification of methods by Quinonero-Candela
and Rasmussen (2005)

Titsias (2009) (derived the bound in regression and treated inducing
variables as variational parameters). A continuation of this in
Titsias and Lawrence (2010) extended the framework to
variationally integrate out inputs in GP functions

Hensman, Fusi and Lawrence (2013) (combined the framework with
stochastic data sub-sampling variational inference)

Determinantal point processes

Lets now discuss how we can extend this approximation to determinantal
point processes

Determinantal point processes

Given a discrete set of items Y = {x1, . . . , xn} a DPP defines a
distribution over all 2n possible subsets via a n × n kernel matrix LY
such that [LY]ij = L(xi , xj):

Pr(Y = Y) =
det(LY)

det(LY + I)

where LY is the kernel sub-matrix indexed by the elements of Y ⊆ Y

A DPP is a point process that favors repulsion, i.e. items with very
similar descriptors (xs) are unlikely to appear in the same realization

I for full details see e.g. Kulesza and Taskar, Foundations and
Trends in Machine Learning (2012)

Determinantal point processes

Given a discrete set of items Y = {x1, . . . , xn} a DPP defines a
distribution over all 2n possible subsets via a n × n kernel matrix LY
such that [LY]ij = L(xi , xj):

Pr(Y = Y) =
det(LY)

det(LY + I)

where LY is the kernel sub-matrix indexed by the elements of Y ⊆ Y

A DPP is a point process that favors repulsion, i.e. items with very
similar descriptors (xs) are unlikely to appear in the same realization

I for full details see e.g. Kulesza and Taskar, Foundations and
Trends in Machine Learning (2012)

Determinantal point processes

Given a set of observed subsets of items (Y1, . . . ,YT) we can fit the
model by ML:

L(θ) = log
T∏

t=1

det(LYt)

det(LY + I)

When the set Y is very large we cannot store LY and compute
det(LY + I)

I ⇒ maximization of the exact likelihood becomes intractable

To apply variational inference we need to compute an upper bound
on det(LY + I) or equivalently a lower bound on

1

det(LY + I)

Determinantal point processes

Given a set of observed subsets of items (Y1, . . . ,YT) we can fit the
model by ML:

L(θ) = log
T∏

t=1

det(LYt)

det(LY + I)

When the set Y is very large we cannot store LY and compute
det(LY + I)

I ⇒ maximization of the exact likelihood becomes intractable

To apply variational inference we need to compute an upper bound
on det(LY + I) or equivalently a lower bound on

1

det(LY + I)

Determinantal point processes

Given a set of observed subsets of items (Y1, . . . ,YT) we can fit the
model by ML:

L(θ) = log
T∏

t=1

det(LYt)

det(LY + I)

When the set Y is very large we cannot store LY and compute
det(LY + I)

I ⇒ maximization of the exact likelihood becomes intractable

To apply variational inference we need to compute an upper bound
on det(LY + I) or equivalently a lower bound on

1

det(LY + I)

Determinantal point processes

We assume an inducing subset Z ⊆ Y. From the bound in GP
regression we know that:

N (y|0, LY+σ2I) ≥ N (y|0, LYZL
−1
Z LZY+σ2I)e−

1
2σ2 tr(LY−LYZ L−1

Z LZY)

By setting y = 0 and σ2 = 1:

1

det(LY + I)
1
2

≥ 1

det(LYZL
−1
Z LZY + I)

1
2

e−
1
2 tr(LY−LYZ L−1

Z LZY)

By taking the square:

1

det(LY + I)
≥ 1

det(LYZL
−1
Z LZY + I)

e−tr(LY−LYZ L−1
Z LZY)

Determinantal point processes

We assume an inducing subset Z ⊆ Y. From the bound in GP
regression we know that:

N (y|0, LY+σ2I) ≥ N (y|0, LYZL
−1
Z LZY+σ2I)e−

1
2σ2 tr(LY−LYZ L−1

Z LZY)

By setting y = 0 and σ2 = 1:

1

det(LY + I)
1
2

≥ 1

det(LYZL
−1
Z LZY + I)

1
2

e−
1
2 tr(LY−LYZ L−1

Z LZY)

By taking the square:

1

det(LY + I)
≥ 1

det(LYZL
−1
Z LZY + I)

e−tr(LY−LYZ L−1
Z LZY)

Determinantal point processes

We assume an inducing subset Z ⊆ Y. From the bound in GP
regression we know that:

N (y|0, LY+σ2I) ≥ N (y|0, LYZL
−1
Z LZY+σ2I)e−

1
2σ2 tr(LY−LYZ L−1

Z LZY)

By setting y = 0 and σ2 = 1:

1

det(LY + I)
1
2

≥ 1

det(LYZL
−1
Z LZY + I)

1
2

e−
1
2 tr(LY−LYZ L−1

Z LZY)

By taking the square:

1

det(LY + I)
≥ 1

det(LYZL
−1
Z LZY + I)

e−tr(LY−LYZ L−1
Z LZY)

Determinantal point processes

1

det(LY + I)
≥ 1

det(LYZL
−1
Z LZY + I)

e−tr(LY−LYZ L−1
Z LZY)

By applying the matrix determinant lemma and rearranging

1

det(LY + I)
≥ det(LZ)

det(LZ + LZYLYZ)
e−tr(LY)+tr(L−1

Z LZYLYZ)

which is computed in O(nm2) where m is the size of Z

We can now substitute the bound on the likelihood and
maximize the overall lower bound. Z is a variational
parameter exactly as in the GP case

Determinantal point processes

1

det(LY + I)
≥ 1

det(LYZL
−1
Z LZY + I)

e−tr(LY−LYZ L−1
Z LZY)

By applying the matrix determinant lemma and rearranging

1

det(LY + I)
≥ det(LZ)

det(LZ + LZYLYZ)
e−tr(LY)+tr(L−1

Z LZYLYZ)

which is computed in O(nm2) where m is the size of Z

We can now substitute the bound on the likelihood and
maximize the overall lower bound. Z is a variational
parameter exactly as in the GP case

Determinantal point processes

1

det(LY + I)
≥ 1

det(LYZL
−1
Z LZY + I)

e−tr(LY−LYZ L−1
Z LZY)

By applying the matrix determinant lemma and rearranging

1

det(LY + I)
≥ det(LZ)

det(LZ + LZYLYZ)
e−tr(LY)+tr(L−1

Z LZYLYZ)

which is computed in O(nm2) where m is the size of Z

We can now substitute the bound on the likelihood and
maximize the overall lower bound. Z is a variational
parameter exactly as in the GP case

Determinantal point processes

If the space of items is continuous, i.e. Y = RD , and assuming∫
L(x, x)dx <∞ a DPP has density

P(Y = Y) =
det(LY)∏∞

i=1(λi + 1)

where λi s are the eigenvalues of the kernel function. The model
now is doubly intractable as typically we don’t know the eigenvalues
of the kernel

However, we can compute a lower bound:

1∏∞
i=1(λi + 1)

≥ det(LZ)

det(LZ + Ψ)
e−

∫
L(x,x)dx+tr(L−1

Z Ψ)

where

[Ψ]ij =

∫
L(zi , x)L(x, zj)dx

Z are again variational parameters and can be taken to be
pseudo-inputs

Determinantal point processes

If the space of items is continuous, i.e. Y = RD , and assuming∫
L(x, x)dx <∞ a DPP has density

P(Y = Y) =
det(LY)∏∞

i=1(λi + 1)

where λi s are the eigenvalues of the kernel function. The model
now is doubly intractable as typically we don’t know the eigenvalues
of the kernel

However, we can compute a lower bound:

1∏∞
i=1(λi + 1)

≥ det(LZ)

det(LZ + Ψ)
e−

∫
L(x,x)dx+tr(L−1

Z Ψ)

where

[Ψ]ij =

∫
L(zi , x)L(x, zj)dx

Z are again variational parameters and can be taken to be
pseudo-inputs

Determinantal point processes

If the space of items is continuous, i.e. Y = RD , and assuming∫
L(x, x)dx <∞ a DPP has density

P(Y = Y) =
det(LY)∏∞

i=1(λi + 1)

where λi s are the eigenvalues of the kernel function. The model
now is doubly intractable as typically we don’t know the eigenvalues
of the kernel

However, we can compute a lower bound:

1∏∞
i=1(λi + 1)

≥ det(LZ)

det(LZ + Ψ)
e−

∫
L(x,x)dx+tr(L−1

Z Ψ)

where

[Ψ]ij =

∫
L(zi , x)L(x, zj)dx

Z are again variational parameters and can be taken to be
pseudo-inputs

Determinantal point processes

Discrete case:

1

det(LY + I)
≥ det(LZ)

det(LZ + LZYLYZ)
e−tr(LY)+tr(L−1

Z LZYLYZ)

Continuous case:

1∏∞
i=1(λi + 1)

≥ det(LZ)

det(LZ + Ψ)
e−

∫
L(x,x)dx+tr(L−1

Z Ψ)

These bounds have similar structure with the ones of Affandi, Fox,
Adams and Taskar, ICML (2014)

I The important difference is that the new bounds do not
depend on the difficult to compute eigenvalues of the kernel
matrix or the unknown eigenvalues of the full kernel operator

I So the current variational framework should be applicable to a
wider class of DPPs

Determinantal point processes

Discrete case:

1

det(LY + I)
≥ det(LZ)

det(LZ + LZYLYZ)
e−tr(LY)+tr(L−1

Z LZYLYZ)

Continuous case:

1∏∞
i=1(λi + 1)

≥ det(LZ)

det(LZ + Ψ)
e−

∫
L(x,x)dx+tr(L−1

Z Ψ)

These bounds have similar structure with the ones of Affandi, Fox,
Adams and Taskar, ICML (2014)

I The important difference is that the new bounds do not
depend on the difficult to compute eigenvalues of the kernel
matrix or the unknown eigenvalues of the full kernel operator

I So the current variational framework should be applicable to a
wider class of DPPs

Discussion

Summary: Variational inference based on inducing variables provides a
rigorous mechanism to approximate GPs and DPPs

Some challenges:

I Can we further reduce the computational complexity of these
methods?

I Can we use similar ideas in other Bayesian non-parametric models
such as those based on Dirichlet processes?

