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The stochastic volatility and log-Gaussian Cox process models are examples of latent Gaussian
models with joint density

p(y,x) = p(y|x)p(x),
wherep(y|x) is a non-Gaussian likelihood andp(x) a Gaussian prior distribution over the latent
vectorx. Here, we only wish to discuss sampling the latent vector. A potential limitation of the
proposed algorithms is that they require the first and secondderivatives of the full joint density. This
is restrictive because in certain applications we may need to deal with limited information regarding
the geometry of the likelihood. For instance, the use of second derivatives oflog p(y|x) can often
be undesirable because of high computational cost. In contrast, the full information geometry of the
Gaussian prior can always be taken into account.

Consider the proposal distribution

Q(x′|x) ∝ H(x′,x)p(x′),

which proposes a newx′ given the currentx. H(x′,x) is such that its logarithm is quadratic in
x′, thusQ(x′|x) is Gaussian. By construction the proposal distribution is invariant to the Gaussian
prior. H(x′,x) should be set to incorporate some properties of the non-Gaussian likelihoodp(y|x).
Auxiliary variables can be employed for such construction.The idea is to approximate the non-
Gaussian likelihood by an auxiliary Gaussian likelihoodp(z|x) wherez are auxiliary variables that
can be regarded as pseudo data. The simplest choice is to usep(z|x) = N (z|x, σ

2

2 I) which says
thatz is a noisy version ofx. The sampling scheme iterates between updatingz andx according to

(a) z = x+ σ√
2
η, η ∼ N (0, I)

(b) x′ ∼ 1
Z(z)N (z|x′, σ

2

2 I)p(x′) and accept/reject using MH

This iteration leavesp(x|y) invariant and implies a symmetric form forH(x′,x), i.e.H(x′,x) =
H(x,x′). When the variance of the Gaussianp(x) tends to infinity, step (b) reduces tox′ = z+ σ√

2
η

and both steps combined yieldx′ = x+ ση. The above algorithm can be thought of as aGaussian
scaled random walk Metropolis (GS-RWM). Similarly, we can obtain aGaussian scaled Metropolis
adjusted Langevin algorithm (GS-MALA) by samplingz in step (a) (while keeping (b) unchanged)
according to

z = x+
σ2

2
∇x log p(y|x) +

σ√
2
η.

This implies that the auxiliary likelihood is nowp(z|x) = N (z|x+ σ
2

2 ∇x log p(y|x), σ
2

2 I) and the
scheme reduces to standard MALA when the variance ofp(x) approaches infinity. When second
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Fig. 1. Posterior Monte Carlo estimates obtained by GS-RWM (plots in the first row) and GS-MALA
(second row). The format of the figure and the experiment follows exactly Fig. 8. The results are
obtained from 5000 posterior samples after a burn-in period in which the scale σ

2 of the proposal
distribution was adapted to achieve a certain acceptance rate. For GS-RWM, σ2 was tuned to achieve
an acceptance rate of between 20% to 30%, while for GS-MALA the range was 50% to 60%. Notice
that GS-MALA provides quite satisfactory results.

Table 1. Effective sample sizes of GS-RWM and GS-MALA on the log-
Gaussian Cox point process example. Notice that the GS-MALA that uses
gradient information about the log likelihood has significantly better perfor-
mance than GS-RWM and also slightly outperforms MMALA (see Table 10).
Running times include also the adaptive phase that tunes σ

2. GS-RWM had
larger running time since it required longer adaptive phase.

Method Time(s) ESS(minimum, median, maximum) s/minimum ESS
GS-RWM 1311 (4, 29, 109) 327.7
GS-MALA 942 (36, 205, 524) 26.1

derivatives oflog p(y|x) are easy to compute, further algorithms can be obtained by following the
above framework. Preliminary results using GS-RWM and GS-MALA on the log-Gaussian Cox
point process example are shown in Fig. 1 and Table 1.


