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Abstract

We introduce a variational inference framework
for training the Gaussian process latent variable
model and thus performing Bayesian nonlinear
dimensionality reduction. This method allows
us to variationally integrate out the input vari-
ables of the Gaussian process and compute a
lower bound on the exact marginal likelihood of
the nonlinear latent variable model. The maxi-
mization of the variational lower bound provides
a Bayesian training procedure that is robust to
overfitting and can automatically select the di-
mensionality of the nonlinear latent space. We
demonstrate our method on real world datasets.
The focus in this paper is on dimensionality re-
duction problems, but the methodology is more
general. For example, our algorithm is imme-
diately applicable for training Gaussian process
models in the presence of missing or uncertain
inputs.

1 Introduction

Gaussian processes (GPs) (see e.g. Rasmussen and
Williams, 2006) are stochastic processes over real-valued
functions. GPs offer a Bayesian nonparametric framework
for inference of highly nonlinear latent functions from ob-
served data. They have become very popular in machine
learning for solving problems such as nonlinear regression
and classification.

The standard application of GP models is to supervised
learning tasks where both output and input data are as-
sumed to be given at training time. The application of
GPs to unsupervised learning tasks is more involved. One
approach to unsupervised learning with GPs is the Gaus-
sian process latent variable model (GP-LVM) proposed by
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Lawrence (2004, 2005). GP-LVM can be considered as a
multiple-output GP regression model where only the out-
put data are given. The inputs are unobserved and are
treated as latent variables, however instead of integrating
out the latent variables, they are optimized. This trick
makes the model tractable and some theoretical ground-
ing for the approach is given by the fact that the model
can be seen as a nonlinear extension of the linear prob-
abilistic PCA (PPCA). In PPCA (and in factor analysis
(FA)) Bayesian extensions of the model are straightforward
(Bishop, 1999b; Ghahramani and Beal, 2000) using varia-
tional algorithms based on mean field approximations. An
analogous variational method for the GP-LVM is a much
more challenging problem which had not been addressed
until this paper. The main difficulty is that to apply vari-
ational Bayes to GP-LVM we need to approximately inte-
grate out the latent/input variables that appear nonlinearly
in the inverse kernel matrix of the GP model. Standard
mean field variational methodologies do not lead to an an-
alytically tractable algorithm.

We introduce a framework that allows us to variationally
integrate out the latent variables in the GP-LVM and com-
pute a closed-form Jensen’s lower bound on the true log
marginal likelihood of the data. The key ingredient that
makes the variational Bayes approach tractable is the ap-
plication of variational inference in anexpanded probabil-
ity modelwhere the GP prior is augmented to include aux-
iliary inducing variables. Inducing variables were intro-
duced originally for computational speed ups in GP regres-
sion models (Csató and Opper, 2002; Seeger et al., 2003;
Csat́o, 2002; Snelson and Ghahramani, 2006; Quiñonero
Candela and Rasmussen, 2005; Titsias, 2009). Our ap-
proach builds on, and significantly extends the variational
sparse GP method of Titsias (2009) so that a closed-form
variational lower bound of the GP-LVM marginal likeli-
hood is computed. This solves a key problem with the
GP-LVM: variational inference in the GP-LVM allows for
Bayesian training of the model that is robust to overfitting.
Furthermore, by using the automatic relevance determina-
tion (ARD) squared exponential kernel, the algorithm al-
lows us to automatically infer the dimensionality of the
nonlinear latent space without introducing explicit regular-
izers to enforce this constraint (Geiger et al., 2009).
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Although, in this paper, we focus on application of the vari-
ational approach to the GP-LVM, the methodology we have
developed can be more widely applied to a variety of other
GP models. In particular, our algorithm is immediately ap-
plicable for training GPs with missing or uncertain inputs
(Girard et al., 2002). Other possible applications will be
discussed as future work.

In the remainder of the paper we first review the GP-LVM
and then we introduce our variational approximation. We
finish by demonstrating the ability of the new model to au-
tomatically determine dimensionality and resist overfitting
on real world datasets.

2 Gaussian process latent variable model

Let Y ∈ RN×D be the observed data whereN is the
number of observations andD the dimensionality of each
data vector. These data are associated with latent variables
X ∈ RN×Q where, for the purpose of doing dimension-
ality reduction,Q ≪ D. The GP-LVM (Lawrence, 2005)
defines a forward (or generative) mapping from the latent
space to observation space that is governed by Gaussian
processes. If the GPs are taken to be independent across
the features then the likelihood function is written as

p(Y |X) =

D∏

d=1

p(yd|X), (1)

whereyd represents thedth column ofY and

p(yd|X) = N (yd|0,KNN + β−1IN ). (2)

Here,KNN is theN ×N covariance matrix defined by the
covariance (or kernel) functionk(x,x′). For the purpose of
doing automatic model selection of the dimensionality of
latent space, this kernel can be chosen to follow the ARD
(see Rasmussen and Williams, 2006) squared exponential
form:

k(x,x′) = σ2
f exp

(
−

1

2

Q∑

q=1

αq(xq − x′q)
2

)
. (3)

Equation (1) can be viewed as the likelihood function of a
multiple-output GP regression model where the vectors of
different outputs are drawn independently from the same
Gaussian process prior which is evaluated at the inputsX.
SinceX is a latent variable, we can assign it a prior density
given by the standard normal density. More precisely, the
prior forX is:

p(X) =

N∏

n=1

N (xn|0, IQ), (4)

where eachxn is thenth row of X. The joint probability
model for the GP-LVM model is

p(Y,X) = p(Y |X)p(X). (5)

The hyperparameters of the model are the kernel param-
etersθ = (σ2

f , α1, . . . , αQ) and the inverse variance pa-
rameterβ. For the sake of clarity, these parameters are
omitted from the conditioning of the distribution1. Cur-
rently, the primary methodology for training the GP-LVM
model is to find the MAP estimate ofX (Lawrence, 2005)
whilst jointly maximizing with respect to the hyperparam-
eters. Here, we develop a variational Bayesian approach to
marginalization of the latent variables,X, allowing us to
optimize the resulting lower bound on the marginal likeli-
hood with respect to the hyperparameters. The lower bound
can also be used for model comparison and automatic se-
lection of the latent dimensionality.

3 Variational inference

We wish to compute the marginal likelihood of the data:

p(Y ) =

∫
p(Y |X)p(X)dX. (6)

However, this quantity is intractable asX appears nonlin-
early inside the inverse of the covariance matrixKNN +
β−1IN . Instead, we seek to apply an approximate varia-
tional inference procedure where we introduce a variational
distributionq(X) to approximate the true posterior distri-
butionp(X|Y ) over the latent variables. We take the varia-
tional distribution to have a factorized Gaussian form over
the latent variables,

q(X) =

N∏

n=1

N (xn|µn, Sn), (7)

where the variational parameters are{µn, Sn}N
n=1 and, for

simplicity, Sn is taken to be a diagonal covariance ma-
trix2. Using this variational distribution we can express a
Jensen’s lower bound on thelog p(Y ) that takes the form:

F (q) =

∫
q(X) log

p(Y |X)p(X)

q(X)
dX

=

∫
q(X) log p(Y |X)dX −

∫
q(X) log

q(X)

p(X)
dX

= F̃ (q) − KL(q||p), (8)

where the second term is the negative KL divergence be-
tween the variational posterior distributionq(X) and the
prior distributionp(X) over the latent variables. This term
is computed analytically since both distributions are Gaus-
sians. Therefore, the difficult part when estimating the
above bound is the first term:

F̃ (q) =

D∑

d=1

∫
q(X) log p(yd|X)dX =

D∑

d=1

F̃d(q), (9)

1A precise notation is to write p(Y, X|β, θ) =
p(Y |X, β, θ)p(X).

2This can be extended to non-diagonal within our framework.
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where we have used (1). Thus, the computation ofF̃ (q)

breaks down to separate computations of eachF̃d(q), cor-
responding to thedth output. Notice that the computation of
F̃d(q) involves an analytically intractable integration. This
arises becauselog p(yd|X) containsX in an highly non-
linear manner inside the inverse of the covariance matrix,
KNN + β−1IN . Our main contribution is a mathematical
tool that allows us to compute a closed-form lower bound
for F̃d(q). As we will see, the key idea is to apply vari-
ational sparse GP regression in an augmented probability
model.

3.1 Lower bound by applying variational sparse GP
regression

The computation iñFd(q) involves an expectation over the
intractable termlog p(yd|X). To deal with this, we first
compute a Jensen’s lower bound onlog p(yd|X) by intro-
ducing the GP latent function values together with auxiliary
inducing variables as those used in sparse GP models.

Sparse approximations have already been applied to speed
up the GP-LVM Lawrence (2007). The first step of our
approximation is equivalent to applying the new varia-
tional approximation of Titsias (2009) to the standard GP-
LVM. The likelihood functionp(yd|X) is just the Gaussian
marginal likelihood of a GP regression model. We make
this explicit by introducing the GP latent function values
fd ∈ RN associated with the vector of (noise corrupted)
outputsyd (thedth column ofY ). The “complete” likeli-
hood associated with the marginal likelihoodp(yd|X) is:

p(yd, fd|X) = p(yd|fd)p(fd|X), (10)

wherep(yd|fd) = N (yd|fd, β
−1IN ) and p(fd|X) is the

zero-mean GP prior with covariance matrixKNN . Note
that the above joint model still containsX inside the in-
verse ofKNN making expectations under distributions
overX difficult to compute. We finesse this intractability
by introducing auxiliary inducing variables and applying
the variational sparse GP formulation of Titsias (2009).

We follow the approach of Lawrence (2007): for each vec-
tor of latent function valuesfd we introduce a separate set
of M inducing variablesud ∈ RM evaluated at a set of in-
ducing input locations given byZ ∈ RM×Q. For simplic-
ity, we assume that alluds, associated with different out-
puts, are evaluated at the same inducing locations, however
this could be relaxed. Theud variables are just function
points drawn from the GP prior. Using these inducing vari-
ables we augment the joint probability model in eq. (10):

p(yd, fd,ud|X,Z) = p(yd|fd)p(fd|ud,X, Z)p(ud|Z),
(11)

where we used the fact that the joint GP prior over function
valuesfd andud evaluated at inputsX andZ factorizes as
p(fd,ud|X,Z) = p(fd|ud,X, Z)p(ud|Z) where

p(fd|ud,X, Z) = N (fd|αd,KNN −KNMK−1
MMKMN )

is the conditional GP prior withαd = KNMK−1
MMud.

Further,p(ud|Z) = N (ud|0,KMM ) is the marginal GP
prior over the inducing variables. The likelihoodp(yd|X)
can be equivalently computed from the above augmented
model by marginalizing out(fd,ud) and crucially this is
true for any value of the inducing inputsZ. This means
that, unlikeX, the inducing inputsZ arenot random vari-
ables. Neither are they model hyperparameters, they are
variational parameters. This interpretation of the induc-
ing inputs is key in developing our approximation, it arises
from the variational approach of Titsias (2009). Taking
advantage of this observation we now simplify our nota-
tion by droppingZ from our expressions. We can now
apply variational inference to approximate the true poste-
rior, p(fd,ud|yd,X) = p(fd|ud,yd,X)p(ud|yd,X), with
a sparse variational distribution that takes the form

q(fd,ud) = p(fd|ud,X)φ(ud), (12)

wherep(fd|ud,X) is the conditional GP prior that appears
in the joint model in (11), whileφ(ud) is a variational dis-
tribution over the inducing variablesud. Thus we obtain a
lower bound:

log p(yd|X) ≥

∫
φ(ud) log

p(ud)N (yd|αd, β
−1IN )

φ(ud)
dud

−
β

2
Tr(KNN −KNMK−1

MMKMN ), (13)

whereαd = KNMK−1
MMud. In the variational sparse GP

method (Titsias, 2009), theφ(ud) distribution is computed
in an optimal way. Such an optimal choice of this distribu-
tion depends on the latent variablesX and is not useful in
our case. In order to obtain the bound for the GP-LVM we
need to take a mean field approach and force independence
of the distributionφ(ud) from the random variableX.

So far we have computed a lower bound onlog p(yd|X)

which is the intractable term iñFd(q). Using eq. (13) and
the definition ofF̃d(q) from (9) we have

F̃d(q) ≥

∫
q(X)

[∫
φ(ud) log

p(ud)N (yd|αd, β
−1IN )

φ(ud)
dud

−
β

2
Tr(KNN ) +

β

2
Tr(K−1

MMKMNKNM )
]
dX,

where we used standard properties of the trace of a matrix.
Since (under our factorization assumption)φ(ud) does not
depend on the random variableX, we can swap the inte-
grations overX andud and perform firstly the integration
with respect toX:

F̃d(q) ≥∫
φ(ud)

[
〈logN (yd|αd, β

−1IN )〉q(X) + log
p(ud)

φ(ud)

]
dud

−
β

2
Tr
(
〈KNN 〉q(X)

)
+
β

2
Tr
(
K−1

MM 〈KMNKNM 〉q(X)

)
,
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where 〈·〉q(X) denotes expectation under the distribu-
tion q(X). Now, we can analytically maximize the
above lower bound with respect to the distributionφ(ud).
The optimal setting of this distribution isφ(ud) ∝
〈logN (yd|αd, β

−1IN )〉q(X)p(ud) and the lower bound
that automatically incorporates such an optimal setting is
obtained easily by reversing Jensen’s inequality,

F̃d(q) ≥ log

(∫
e〈logN (yd|αd,β−1IN )〉q(X)p(ud)dud

)

−
β

2
Tr
(
〈KNN 〉q(X)

)
+
β

2
Tr
(
K−1

MM 〈KMNKNM 〉q(X)

)
.

The r.h.s. in this equation is a lower bound in which the
variational distributionφ(ud) has been eliminated opti-
mally. This quantity now can be computed in closed-
form since it boils down to computing the statistics
ψ0 = Tr

(
〈KNN 〉q(X)

)
, Ψ1 = 〈KNM 〉q(X) and Ψ2 =

〈KMNKNM 〉q(X). These statistics for certain covari-
ance functions, such as the ARD squared exponential from
(3), are computable analytically as discussed in section
3.2. Notice also that〈logN (yd|αd, β

−1IN )〉q(X) is just
a quadratic function ofud that depends on the statisticsΨ1

andΨ2. Therefore, the integration involved in the above
equation is a standard Gaussian integral. The closed-form
of the lower bound oñFd(q) is:

F̃d(q) ≥ log

[
(β)

N
2 |KMM |

1
2

(2π)
N
2 |βΨ2 +KMM |

1
2

e−
1
2y

T
d Wyd

]

−
βψ0

2
+
β

2
Tr
(
K−1

MMΨ2

)
, (14)

whereW = βIN − β2Ψ1(βΨ2 + KMM )−1ΨT
1 . We can

now compute the closed-from variational lower of the GP-
LVM according to equation (8). More precisely, by sum-
ming both sides of (14) over theD outputs we obtain on
the l.h.s. the term̃F (q) (see equation (9)) and on the r.h.s.
a lower bound oñF (q). By substituting the latter quantity
(in place ofF̃ (q)) in (8) we obtain the final GP-LVM lower
bound. This bound has an elegant form since it resembles
closely the corresponding sparse GP-LVM marginal likeli-
hood (whereX is optimized, not integrated out) obtained
by applying the variational method of Titsias (2009). The
difference is that now (whereX is variationally integrated
out) we obtain an extra regularization term, i.e. the term
KL(q||p) in (8), and also the kernel quantities Tr(KNN ),
KNM andKMNKNM that containX are replaced by vari-
ational averages, which are theΨ statistics defined above.

The bound can be jointly maximized over the variational
parameters({µn, Sn}

N
n=1, Z) and the model hyperparam-

eters(β,θ) by applying gradient-based optimization tech-
niques. The approach is similar to the MAP optimization of
the objective function employed in Lawrence (2005) with
the main difference that now we have an additional set of
variational parameters governing the approximate posterior
variances in the latent space.

3.2 Computation of theΨ statistics

To obtain an explicit evaluation of the variational lower
bound we need to compute the statistics(ψ0,Ψ1,Ψ2). We
can rewrite theψ0 statistic asψ0 =

∑N

n=1 ψ
n
0 where

ψn
0 =

∫
k(xn,xn)N (xn|µn, Sn)dxn. (15)

Ψ1 is anN ×M matrix such that

(Ψ1)nm =

∫
k(xn, zm)N (xn|µn, Sn)dxn. (16)

Ψ2 is an M × M matrix which is written asΨ2 =∑N

n=1 Ψn
2 whereΨn

2 is such that

(Ψn
2 )mm′ =

∫
k(xn, zm)k(zm′ ,xn)N (xn|µn, Sn)dxn.

(17)
The above computations involve convolutions of the co-
variance function with a Gaussian density. For some stan-
dard kernels such the ARD squared exponential (SE) co-
variance and the linear covariance function these statistics
are obtained analytically. In particular for the ARD SE ker-
nel,ψ0 = Nσ2

f ,

(Ψ1)nm = σ2
f

Q∏

q=1

e
− 1

2

αq(µnq−zmq)2

αqSnq+1

(αqSnq + 1)
1
2

and

(Ψn
2 )mm′ = σ4

f

Q∏

q=1

e
−

αq(zmq−z
m′q

)2

4 −
αq(µnq−z̄q)2

2αqSnq+1

(2αqSnq + 1)
1
2

,

wherez̄q =
(zmq+zm′q)

2 . This gives us all the components
we need to compute the variational lower bound for the
ARD SE kernel. For the linear covariance function the in-
tegrals are also tractable. Suppose the kernel function fol-
lows the ARD linear form:

k(x,x′) = xTAx′, (18)

whereA is a positive definite diagonal covariance matrix.
Learning the diagonal elements ofA will allow to perform
automatic model selection of the dimensionality of the lin-
ear latent space in a similar manner to ARD SE covari-
ance function. Thus, the framework provides an alternative
method to perform Bayesian probabilistic PCA (Bishop,
1999a; Minka, 2001). For this linear kernel the statistics are
such thatψn

0 = Tr
[
A(µnµ

T
n + Sn)

]
, (Ψ1)nm = µT

nAzm

and(Ψn
2 )mm′ = zT

mA(µnµ
T
n + Sn)Azm′ .

Finally, it is worth noticing that theΨ statistics are com-
puted in a decomposable way which is useful when a new
data vector is inserted into the model. In particular, the
statisticsψ0 and Ψ2 are written as sums of independent
terms where each term is associated with a data point and
similarly each column of the matrixΨ1 is associated with
only one data point. These properties can help to speed up
computations during test time as discussed in section 4.
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3.3 Summary of the variational method

To summarize the above variational method allows to com-
pute a Jensen’s lower bound on the GP-LVM marginal like-
lihood and the key to obtaining this bound was to intro-
duce auxiliary variables into the model similar to those
used in sparse GP regression. Although, we explained
the method using a sequence of steps, we could also start
by writing the joint probability density over all variables
(Y,X, {fd,ud}

D
d=1) and then introduce the full variational

distribution to approximate the model at once. This full
variational distribution that gives rise to the lower bound
obtained earlier is given by

q({fd,ud}
D
d=1,X) =

(
D∏

d=1

p(fd|ud,X)φ(ud)

)
q(X).

This distribution is a mean field approximation with respect
to uds andX. However, it is not a mean field with respect
to fds since onceuds andX are marginalized out, thenfds
become coupled. In addition, the fact that theq(X) dis-
tribution is factorized over the latent variables is a conse-
quence of the mean field assumption betweenuds andX.
It does not need to be imposed in advance. To see this,
notice thatq(X) appears only in theΨ statistics which as
explained earlier are computed in a decomposable (across
data points/latent variables) way.

4 Prediction and computation of
probabilities in test data

In this section, we discuss how we can use the proposed
model, from now on referred to as Bayesian GP-LVM,
in order to make predictions in unseen data. Firstly, we
explain how we can approximately compute the proba-
bility density p(y∗|Y ) of some observed test data vector
y∗ ∈ RD, which is allowed to have missing values. The
computation of this probability can allow us to use the
model as a density estimator which, for instance, can repre-
sent the class conditional distribution in a generative based
classification system. We will exploit such a use in section
5. Secondly we discuss how we can predict the function
valuesy∗ given that we have an estimate of the variational
distributionq(x∗) for the latent variable associated with the
observationy∗. This can be useful when we wish to predict
the missing values of some partially observed test output
y∗ = (yO

∗ ,y
U
∗ ) ∈ RD whereyO

∗ are observed compo-
nents in the vectory∗ andyU

∗ are the missing values that
we would like to predict. This second prediction task can
also be used to remove the noise of a fully observed output.

First we discuss how to approximate the densityp(y∗|Y ).
By introducing the latent variablesX (corresponding to the
training outputsY ) and new test latent variablesx∗, the

previous density is written as

p(y∗|Y ) =

∫
p(y∗, Y |X,x∗)p(X,x∗)dXdx∗∫

p(Y |X)p(X)dX
. (19)

Note that this is a ratio of two marginal likelihoods. In the
denominator we have the marginal likelihood of the GP-
LVM for which we have already computed a variational
lower bound. The numerator is another marginal likelihood
that is obtained by augmenting the training dataY with
the test pointy∗ and integrating out bothX and the newly
inserted latent variablex∗. To approximate the density
p(y∗|Y ), we construct a ratio of lower bounds as follows.∫
p(Y |X)p(X)dX is approximated by the lower bound

eF (q(X)) whereF (q(X)) is the variational lower bound on
the log marginal likelihood as computed in section 3. The
maximization of this lower bound specifies the variational
distribution q(X) over the latent variables in the training
data. Then, this distribution remains fixed during test time.∫
p(y∗, Y |X,x∗)p(X,x∗)dXdx∗ is approximated by the

lower boundeF (q(X,x∗)). To compute this, we need to op-
timize with respect to the parameters(µ∗, S∗) of the Gaus-
sian variational distributionq(x∗). Such optimization is
subject to local minima. However, sensible initializations
ofµ∗ can be employed based on the mean of the variational
distributions associated with the nearest neighbours ofy∗

in the training dataY . Furthermore, such optimization is
fast because we can perform several precomputations in
advance. In particular, notice that because the computa-
tion of theΨ statistics decomposes across data, updating
these statistics to account for the insertion of the test point,
involves only averages over the single-point variational dis-
tribution q(x∗). Finally, the approximation ofp(y∗|Y ) is
given by

q(y∗|Y ) = eF (q(X,x∗))−F (q(X)). (20)

We now discuss the second prediction problem where a
partially observed test pointy∗ = (yO

∗ ,y
U
∗ ) is given and

we wish to reconstruct the missing partyU
∗ . This in-

volves two steps. Firstly, we optimize the parameters of
the variational distributionq(x∗) by maximizing the varia-
tional lower bound on

∫
p(yO

∗ , Y |X,x∗)p(X,x∗)dXdx∗

by keeping all the optimized quantities fixed apart from
q(x∗); exactly as explained earlier. To predict nowyU

∗ , we
take the standard GP prediction approach by taking also
into account the fact that the inputx∗ is uncertain since it
has the distributionq(x∗). Therefore, the problem takes
the form of GP prediction with uncertain inputs similar to
Girard et al. (2002). More precisely, to predictyU

∗ we first
predict its latent function valuesfU

∗ according to

q(fU
∗ ) =

∫ (∏

d∈U

∫
p(fU

∗d|ud,x∗)φ(ud)dud

)
q(x∗)dx∗

=

∫
q(fU

∗ |x∗)q(x∗)dx∗, (21)
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whereq(fU
∗ |x∗) is a factorized Gaussian distribution where

each factor takes the form of the projected process pre-
dictive distribution (Csat́o and Opper, 2002; Seeger et al.,
2003; Rasmussen and Williams, 2006). The marginaliza-
tion ofx∗ couples all dimensions offU

∗ and produces a non-
Gaussian fully dependent multivariate density. For squared
exponential kernels all moments of the densityq(fU

∗ ) are
analytically tractable. In practice, we will typically need
only the mean and covariance offU

∗ . The mean isE(fU
∗ ) = ΛTψ∗

1 .

Here,Λ = β(KMM + βΨ2)
−1ΨT

1 Y
U whereY U is the

matrix containing the columns ofY corresponding to the
missing values ofy∗. Also, the vectorψ∗

1 ∈ RM is defined
byψ∗

1 = 〈KM∗〉q(x∗) whereKM∗ = k(Z,x∗). Similarly,

Cov(fU
∗ ) = ΛT

(
Ψ∗

2 −ψ
∗
1(ψ∗

1)T
)
Λ

+ ψ∗
0I − Tr

([
K−1

MM − (KMM + βΨ2)
−1
]
Ψ∗

2

)
I,

whereψ∗
0 = 〈k(x∗,x∗)〉q(x∗) andΨ∗

2 = 〈KM∗K∗M 〉q(x∗).
Notice that theΨ statistics (the terms(ψ∗

0 ,ψ
∗
1 ,Ψ

∗
2)) involv-

ing the test latent variablex∗ appear naturally in these ex-
pressions. Using the above expressions, the predicted mean
of yU

∗ is equal toE(fU
∗ ) and the predicted covariance is

equal to Cov(fU
∗ ) + β−1I.

5 Experiments

To demonstrate the Bayesian GP-LVM we now consider
some standard machine learning data sets. Our aim is to
highlight several characteristics of the algorithm: the im-
proved quality of visualizations achieved by the model,
the utility of being able to access a lower bound on the
marginal likelihood of the data, and the ability of the model
to automatically determine the dimensionality of the data.

5.1 Oil flow data

In the first experiment we illustrate the method in the multi-
phase oil flow data (Bishop and James, 1993) that consists
of 1000, 12 dimensional observations belonging to three
known classes corresponding to different phases of oil flow.
Figure 1 shows the results for these data obtained by ap-
plying the Bayesian GP-LVM with10 latent dimensions
using the ARD SE kernel. The means of the variational
distribution were initialized based on PCA, while the vari-
ances in the variational distribution are initialized to neu-
tral values around0.5. As shown in Figure 1(a), the al-
gorithm switches off automatically7 out of 10 latent di-
mensions by making their inverse lengthscales zero. Fig-
ure 1(b) shows the visualization obtained by keeping only
the dominant latent directions (having the largest inverse
lengthscale) which are the dimensions2 and3. This is a
remarkably high quality two dimensional visualization of

this data. For comparison, Figure 1(c) shows the visualiza-
tion provided by the standard sparse GP-LVM that runs by
assuming only2 latent dimensions. Both models use50 in-
ducing variables, while the latent variablesX optimized in
the standard GP-LVM are initialized based on PCA. Note
that if we were to run the standard GP-LVM with10 latent
dimensions, the model would overfit the data, it would not
reduce the dimensionality in the manner achieved by the
Bayesian GP-LVM. In these two dimensions, the nearest
neighbour error for the different classes (phases of oil flow)
in the case of Bayesian GP-LVM is 3 errors from1000 data
points. The number of the nearest neighbour errors made
when applying the standard GP-LVM was26.

5.2 Frey Faces Data

Here, we consider a dataset of faces (Roweis et al., 2002)
taken from a video sequence that consists of1965 images
of size28×20. In this dataset, we would like to exploit the
ability of the model to reconstruct partially observed test
data. Therefore, we train the model using a random selec-
tion of 1000 images and then we consider the remaining
965 images as test data. Furthermore, in each test image
we assume that only half of the image pixels are observed.
The missing pixels were chosen randomly for each test im-
age. After training on1000 images, each partially observed
test image was processed separately (this involves the op-
timization of the corresponding variational distributionas
discussed in section 4) and the missing pixels were pre-
dicted. Figure 2 shows a few examples of reconstructed
test images. Each column in this figure corresponds to a
test image, where the top plot shows the true test image,
the middle one the partially observed image and the bottom
image shows the reconstructed image. We also measure
the mean absolute reconstruction error over all test images
and missing pixels and compare this error with the standard
sparse GP-LVM. This standard GP-LVM was applied using
several settings of the latent dimensionality:Q = 2, 5, 10
and 30. The Bayesian GP-LVM was trained once using
30 latent dimensions. The latent variablesX in the stan-
dard GP-LVM and the means of the variational distribu-
tion in Bayesian GP-LVM were initialized through PCA.
The error for Bayesian GP-LVM was7.4003. For the stan-
dard GP-LVM the error was10.5748, 9.7284, 19.6949 and
19.6961 for 2, 5, 10 and30 latent dimensions respectively.
Notice that the standard GP-LVM has poor performance
for large value of latent dimension and achieves the best
error when we consider5 latent dimensions. Nevertheless,
this was still worse than the error from the Bayesian GP-
LVM. Finally, Figure 3 shows the values of the inverse
lengthscales obtained by the maximization of the varia-
tional lower bound. Although, in this case, the algorithm
does not shrink some of the dimensions completely to zero,
it does force many of them to obtain small values. Note that
one of the dimensions (the first from the left) seems to be
the most important in explaining the data.
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Figure 1: Panel (a) shows the inverse lengthscales found by applying the Bayesian GP-LVM with ARD SE kernel on the
oil flow data. Panel (b) shows the visualization achieved by keeping the most dominant latent dimensions (2 and 3) which
have the largest inverse lengthscale value. Dimension 2 is plotted on they-axis and 3 and on thex-axis. Plot (c) shows the
visualization found by standard sparse GP-LVM.

Figure 2: Examples of reconstruction of partially observedtest images in Frey faces by applying the Bayesian GP-LVM.
Each column corresponds to a test image. In every column, thetop panel shows the true test image, the middle panel the
partially observed image (where missing pixels are shown inblack) and the bottom image is the reconstructed image.

Figure 3: This plot shows the values of the inverse length-
scales found by using the Bayesian GP-LVM with ARD SE
kernel in Frey faces.

5.3 Digits Data

In the final experiment we use the Bayesian GP-LVM to
build a generative classifier for handwritten digit recogni-
tion. We consider the well known USPS digits dataset. This
dataset consists of16 × 16 images for all10 digits and it

is divided into7291 training examples and2007 test exam-
ples. We run10 Bayesian GP-LVMs, one for each digit,
on the USPS data base. We used10 latent dimensions and
50 inducing variables for each model. This allowed us to
build a probabilistic generative model for each digit so that
we can compute Bayesian class conditional densities in the
test data having the formp(y∗|Y,digit). These class condi-
tional densities are approximated through the ratio of lower
bounds in eq. (20) as described in section 4. The whole ap-
proach allows us to classify new digits by determining the
class labels for test data based on the highest class con-
ditional density value and using a uniform prior over class
labels. The test error made by the Bayesian GP-LVM in the
whole set of2007 test points was95 incorrectly classified
digits i.e. 4.73% error.

6 Discussion
We have introduced an approximation to the marginal like-
lihood of the fully marginalized Gaussian process latent
variable model. Our approximation is in the form of a vari-
ational lower bound. With the fully marginalized model we
can automatically determine the latent dimensionality of a
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given data set. We demonstrated the utility of this rigorous
lower bound on a range of disparate real world data sets.

Our approach can immediately be applied to training Gaus-
sian processes with uncertain inputs where these inputs
have Gaussian prior densities. We also envisage several
other extensions that become computationally feasible us-
ing the same set of methodologies we espouse. Dynam-
ical models based on the GP-LVM have been proposed.
It would be straightforward to include a latent space prior
with a temporal component. This could be a Kalman filter,
a general Gaussian process (Lawrence and Moore, 2007)
or an auto regressive Gaussian process (Wang et al., 2006).
By using our approach to propagating the Gaussian noise
through the dynamics and the latent space a variational
lower bound on the likelihood of these models could be
derived. The importance of such nonlinear models is clear
from the success of unscented Kalman filters and the re-
lated ensemble Kalman filter.

The optimization procedure has a similar computational
cost to that of previously proposed sparse GP-LVMs. We
believe there is scope to improve the speed of the optimiza-
tion procedure by better exploiting the correlation present
in the parameters. A potential strategy would be to use the
control points idea used to speed up MCMC in GPs (Tit-
sias et al., 2009) in order to encode the variational poste-
rior, effectively decoupling these correlations and speeding
convergence of the optimizer.
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