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Abstract

1 Useful matrix derivatives
∂(XY )

∂θ
= X

∂Y

∂θ
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∂X

∂θ
Y (1)
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= −K−1 ∂K

∂θ
K−1 (2)

∂ log |K|
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= Tr
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∂θ

)
(3)

2 Variational lower bound
It can be written in the form

FV = −n
2
log(2π)− n−m

2
log σ2 +

1

2
log |Kmm| −

1

2
log |σ2Kmm +KmnKnm| −

1

2σ2
yTy

+
1

2σ2
yTKnm(σ2Kmm +KmnKnm)−1Kmny −

1

2σ2
tr(Knn) +−

1

2σ2
tr(K−1

mm(KmnKnm)) (4)

We write the above as a sum of the following terms
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3 Derivatives
In the following derivations we make heavily use of the following property of the trace of matrix. In particular,
if there a symmetric (implies also square) matrix A and a square (of same size as A) but possibly not symmetric
matrix B, then it holds

tr(AB) = tr(ABT ) = tr(BTA).

The proof is obvious since tr(AB) = tr(BA) = tr
(
(BA)T

)
= tr(ATBT ) = tr(ABT ).
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)
where
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By substituting the above exression for ∂A∂θ , the derivative ∂F2

∂θ is written

∂F2

∂θ
= −σ

2

2
tr
(
∂Kmm

∂θ
A−1

)
− tr

(
∂Knm

∂θ
A−1Kmn

)
where we used the trace property in eq. ??, with symmetrix matrix A = A−1 and BT = Kmn

∂Knm

∂θ To exress the
derivatives for the term F3, we write first more covneniently in trace form
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where again we took advantage of the symmetry ofA−1 and apply the property in eq. ?? to simplify the expression.
Now by using the fact that ∂A

−1
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∂θ A

−1, we have
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By using now the ∂A

∂θ is given by eq. ??, we further simplify this
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where again we used the trace property in eq. ??/ by taking dvantage the symmetry of K−1
mm.

3.1 Efficient computation of the derivatives
To exploit now the similarities of the above derivatives so that to discover a effciently ordering of the actual
compuations required we write the final forms of the above derivatives and give names to the different terms:
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where the blue terms are similar since all have the form tr(∂Kmm

∂θ C) where C is some (symmetric) matrix os size
m × m. Also the red terms are similar since there are all written as tr(∂Km

∂θ D) where D is an m × n matrix.
Therefore, we can group the blue and red terms as follows:
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Impprtantly this shows the the expensive computation
(
K−1

mm

σ2 −A−1 − A−1Kmny
σ

yTKnmA
−1

σ

)
Kmn between a

m × m and m × n matrix needs to be compuated before any computation of the derivatives starts. In factr the
matrices C and D that multiplied to the matrices ∂Kmm

∂θ and ∂Knm

∂θ , resepctively, can be precomputed since there
are common for all the derivatives with respect to any θ associated with kernel hyperparameter or inducing variable
parameter.
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