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Abstract

1 Useful matrix derivatives
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2 Variational lower bound
It can be written in the form
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We write the above as a sum of the following terms
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3 Derivatives

In the following derivations we make heavily use of the following property of the trace of matrix. In particular,
if there a symmetric (implies also square) matrix A and a square (of same size as .4) but possibly not symmetric
matrix B, then it holds

tr(AB) = tr(ABT) = (BT A).

The proof is obvious since tr(AB) = tr(BA) = tr (BA)T) = tw(ATBY) = tr(ABT).
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By substituting the above exression for %—‘3, the derivative % is written
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where we used the trace property in eq. ??, with symmetrix matrix A = A~! and BT = K,,,
derivatives for the term Fj3, we write first more covneniently in trace form
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where again we took advantage of the symmetry of A~! and apply the property in eq. ?? to simplify the expression.
Now by using the fact that ‘9‘3;1 =—A"124 471 we have
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By using now the %—‘g is given by eq. ??, we further simplify this
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where again we used the trace property in eq. ??/ by taking dvantage the symmetry of K} .

3.1 Efficient computation of the derivatives

To exploit now the similarities of the above derivatives so that to discover a effciently ordering of the actual
compuations required we write the final forms of the above derivatives and give names to the different terms:
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where the blue terms are similar since all have the form tr(%C) where C is some (Symmetric) matrix os size

m X m. Also the red terms are similar since there are all written as tr(%l)) where D is an m X n matrix.
Therefore, we can group the blue and red terms as follows:

o? {8Kmm (K;L}n
tr

— A_l — - U KmnKnm o
00

o2 o o o2 o2

A 'Ky y K A™Y K] K‘#)}

8-Kvnm K;mln -1 AilennyKnmAil Aileny T
(3)+(5)+(6)+(8)—tr[ 50 (( 3 — A — . . >Kmn+02y ﬂ

. . . K1
Impprtantly this shows the the expensive computation (%
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m X m and m X n matrix needs to be compuated before any computation of the derivatives starts. In factr the
matrices C and D that multiplied to the matrices % and alggm, resepctively, can be precomputed since there
are common for all the derivatives with respect to any 6 associated with kernel hyperparameter or inducing variable
parameter.




